Abstract:While various vertical domain large language models (LLMs) have been developed, the challenge of automatically evaluating their performance across different domains remains significant in addressing real-world user needs. Current benchmark-based evaluation methods exhibit rigid, purposeless interactions and rely on pre-collected static datasets that are costly to build, inflexible across domains, and misaligned with practical user needs. To address this, we revisit the evaluation components and introduce two definitions: **Benchmark+**, which extends traditional QA benchmarks into a more flexible ``strategy-criterion'' format; and **Assessment+**, which enhances the interaction process for greater exploration and enables both quantitative metrics and qualitative insights that capture nuanced target LLM behaviors from richer multi-turn interactions. We propose an agent-based evaluation framework called *TestAgent*, which implements these two concepts through retrieval augmented generation and reinforcement learning. Experiments on tasks ranging from building vertical domain evaluation from scratch to activating existing benchmarks demonstrate the effectiveness of *TestAgent* across various scenarios. We believe this work offers an interesting perspective on automatic evaluation for LLMs.
Abstract:Industrial anomaly detection (IAD) has garnered significant attention and experienced rapid development. However, the recent development of IAD approach has encountered certain difficulties due to dataset limitations. On the one hand, most of the state-of-the-art methods have achieved saturation (over 99% in AUROC) on mainstream datasets such as MVTec, and the differences of methods cannot be well distinguished, leading to a significant gap between public datasets and actual application scenarios. On the other hand, the research on various new practical anomaly detection settings is limited by the scale of the dataset, posing a risk of overfitting in evaluation results. Therefore, we propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD, which contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets. It has a larger range of defect area and ratio proportions, making it more challenging than previous datasets. To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics. In addition, beyond the general unsupervised anomaly detection setting, we propose a new setting for Fully Unsupervised Industrial Anomaly Detection (FUIAD) based on the observation that the yield rate in industrial production is usually greater than 60%, which has more practical application value. Finally, we report the results of popular IAD methods on the Real-IAD dataset, providing a highly challenging benchmark to promote the development of the IAD field.
Abstract:3D open-vocabulary scene understanding aims to recognize arbitrary novel categories beyond the base label space. However, existing works not only fail to fully utilize all the available modal information in the 3D domain but also lack sufficient granularity in representing the features of each modality. In this paper, we propose a unified multimodal 3D open-vocabulary scene understanding network, namely UniM-OV3D, which aligns point clouds with image, language and depth. To better integrate global and local features of the point clouds, we design a hierarchical point cloud feature extraction module that learns comprehensive fine-grained feature representations. Further, to facilitate the learning of coarse-to-fine point-semantic representations from captions, we propose the utilization of hierarchical 3D caption pairs, capitalizing on geometric constraints across various viewpoints of 3D scenes. Extensive experimental results demonstrate the effectiveness and superiority of our method in open-vocabulary semantic and instance segmentation, which achieves state-of-the-art performance on both indoor and outdoor benchmarks such as ScanNet, ScanNet200, S3IDS and nuScenes. Code is available at https://github.com/hithqd/UniM-OV3D.
Abstract:This paper introduces a novel attention mechanism, called dual attention, which is both efficient and effective. The dual attention mechanism consists of two parallel components: local attention generated by Convolutional Neural Networks (CNNs) and long-range attention generated by Vision Transformers (ViTs). To address the high computational complexity and memory footprint of vanilla Multi-Head Self-Attention (MHSA), we introduce a novel Multi-Head Partition-wise Attention (MHPA) mechanism. The partition-wise attention approach models both intra-partition and inter-partition attention simultaneously. Building on the dual attention block and partition-wise attention mechanism, we present a hierarchical vision backbone called DualFormer. We evaluate the effectiveness of our model on several computer vision tasks, including image classification on ImageNet, object detection on COCO, and semantic segmentation on Cityscapes. Specifically, the proposed DualFormer-XS achieves 81.5\% top-1 accuracy on ImageNet, outperforming the recent state-of-the-art MPViT-XS by 0.6\% top-1 accuracy with much higher throughput.
Abstract:To achieve promising results on blind image super-resolution (SR), some attempts leveraged the low resolution (LR) images to predict the kernel and improve the SR performance. However, these Supervised Kernel Prediction (SKP) methods are impractical due to the unavailable real-world blur kernels. Although some Unsupervised Degradation Prediction (UDP) methods are proposed to bypass this problem, the \textit{inconsistency} between degradation embedding and SR feature is still challenging. By exploring the correlations between degradation embedding and SR feature, we observe that jointly learning the content and degradation aware feature is optimal. Based on this observation, a Content and Degradation aware SR Network dubbed CDSR is proposed. Specifically, CDSR contains three newly-established modules: (1) a Lightweight Patch-based Encoder (LPE) is applied to jointly extract content and degradation features; (2) a Domain Query Attention based module (DQA) is employed to adaptively reduce the inconsistency; (3) a Codebook-based Space Compress module (CSC) that can suppress the redundant information. Extensive experiments on several benchmarks demonstrate that the proposed CDSR outperforms the existing UDP models and achieves competitive performance on PSNR and SSIM even compared with the state-of-the-art SKP methods.