Abstract:Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner. Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.
Abstract:Open-vocabulary detection (OVD) aims to detect objects beyond a predefined set of categories. As a pioneering model incorporating the YOLO series into OVD, YOLO-World is well-suited for scenarios prioritizing speed and efficiency. However, its performance is hindered by its neck feature fusion mechanism, which causes the quadratic complexity and the limited guided receptive fields. To address these limitations, we present Mamba-YOLO-World, a novel YOLO-based OVD model employing the proposed MambaFusion Path Aggregation Network (MambaFusion-PAN) as its neck architecture. Specifically, we introduce an innovative State Space Model-based feature fusion mechanism consisting of a Parallel-Guided Selective Scan algorithm and a Serial-Guided Selective Scan algorithm with linear complexity and globally guided receptive fields. It leverages multi-modal input sequences and mamba hidden states to guide the selective scanning process. Experiments demonstrate that our model outperforms the original YOLO-World on the COCO and LVIS benchmarks in both zero-shot and fine-tuning settings while maintaining comparable parameters and FLOPs. Additionally, it surpasses existing state-of-the-art OVD methods with fewer parameters and FLOPs.
Abstract:Dataset distillation (DD) aims to distill a small, information-rich dataset from a larger one for efficient neural network training. However, existing DD methods struggle with long-tailed datasets, which are prevalent in real-world scenarios. By investigating the reasons behind this unexpected result, we identified two main causes: 1) Expert networks trained on imbalanced data develop biased gradients, leading to the synthesis of similarly imbalanced distilled datasets. Parameter matching, a common technique in DD, involves aligning the learning parameters of the distilled dataset with that of the original dataset. However, in the context of long-tailed datasets, matching biased experts leads to inheriting the imbalance present in the original data, causing the distilled dataset to inadequately represent tail classes. 2) The experts trained on such datasets perform suboptimally on tail classes, resulting in misguided distillation supervision and poor-quality soft-label initialization. To address these issues, we propose a novel long-tailed dataset distillation method, Long-tailed Aware Dataset distillation (LAD). Specifically, we propose Weight Mismatch Avoidance to avoid directly matching the biased expert trajectories. It reduces the distance between the student and the biased expert trajectories and prevents the tail class bias from being distilled to the synthetic dataset. Moreover, we propose Adaptive Decoupled Matching, which jointly matches the decoupled backbone and classifier to improve the tail class performance and initialize reliable soft labels. This work pioneers the field of long-tailed dataset distillation (LTDD), marking the first effective effort to distill long-tailed datasets.
Abstract:The recent introduction of Diffusion Transformers (DiTs) has demonstrated exceptional capabilities in image generation by using a different backbone architecture, departing from traditional U-Nets and embracing the scalable nature of transformers. Despite their advanced capabilities, the wide deployment of DiTs, particularly for real-time applications, is currently hampered by considerable computational demands at the inference stage. Post-training Quantization (PTQ) has emerged as a fast and data-efficient solution that can significantly reduce computation and memory footprint by using low-bit weights and activations. However, its applicability to DiTs has not yet been explored and faces non-trivial difficulties due to the unique design of DiTs. In this paper, we propose PTQ4DiT, a specifically designed PTQ method for DiTs. We discover two primary quantization challenges inherent in DiTs, notably the presence of salient channels with extreme magnitudes and the temporal variability in distributions of salient activation over multiple timesteps. To tackle these challenges, we propose Channel-wise Salience Balancing (CSB) and Spearmen's $\rho$-guided Salience Calibration (SSC). CSB leverages the complementarity property of channel magnitudes to redistribute the extremes, alleviating quantization errors for both activations and weights. SSC extends this approach by dynamically adjusting the balanced salience to capture the temporal variations in activation. Additionally, to eliminate extra computational costs caused by PTQ4DiT during inference, we design an offline re-parameterization strategy for DiTs. Experiments demonstrate that our PTQ4DiT successfully quantizes DiTs to 8-bit precision (W8A8) while preserving comparable generation ability and further enables effective quantization to 4-bit weight precision (W4A8) for the first time.
Abstract:In this work, we observe that the generators, which are pre-trained on massive natural images, inherently hold the promising potential for superior low-light image enhancement against varying scenarios.Specifically, we embed a pre-trained generator to Retinex model to produce reflectance maps with enhanced detail and vividness, thereby recovering features degraded by low-light conditions.Taking one step further, we introduce a novel optimization strategy, which backpropagates the gradients to the input seeds rather than the parameters of the low-light enhancement model, thus intactly retaining the generative knowledge learned from natural images and achieving faster convergence speed. Benefiting from the pre-trained knowledge and seed-optimization strategy, the low-light enhancement model can significantly regularize the realness and fidelity of the enhanced result, thus rapidly generating high-quality images without training on any low-light dataset. Extensive experiments on various benchmarks demonstrate the superiority of the proposed method over numerous state-of-the-art methods qualitatively and quantitatively.
Abstract:Diffusion models have achieved remarkable success in image generation tasks, yet their practical deployment is restrained by the high memory and time consumption. While quantization paves a way for diffusion model compression and acceleration, existing methods totally fail when the models are quantized to low-bits. In this paper, we unravel three properties in quantized diffusion models that compromise the efficacy of current methods: imbalanced activation distributions, imprecise temporal information, and vulnerability to perturbations of specific modules. To alleviate the intensified low-bit quantization difficulty stemming from the distribution imbalance, we propose finetuning the quantized model to better adapt to the activation distribution. Building on this idea, we identify two critical types of quantized layers: those holding vital temporal information and those sensitive to reduced bit-width, and finetune them to mitigate performance degradation with efficiency. We empirically verify that our approach modifies the activation distribution and provides meaningful temporal information, facilitating easier and more accurate quantization. Our method is evaluated over three high-resolution image generation tasks and achieves state-of-the-art performance under various bit-width settings, as well as being the first method to generate readable images on full 4-bit (i.e. W4A4) Stable Diffusion. Code is been made publicly available.
Abstract:The packing problem, also known as cutting or nesting, has diverse applications in logistics, manufacturing, layout design, and atlas generation. It involves arranging irregularly shaped pieces to minimize waste while avoiding overlap. Recent advances in machine learning, particularly reinforcement learning, have shown promise in addressing the packing problem. In this work, we delve deeper into a novel machine learning-based approach that formulates the packing problem as conditional generative modeling. To tackle the challenges of irregular packing, including object validity constraints and collision avoidance, our method employs the score-based diffusion model to learn a series of gradient fields. These gradient fields encode the correlations between constraint satisfaction and the spatial relationships of polygons, learned from teacher examples. During the testing phase, packing solutions are generated using a coarse-to-fine refinement mechanism guided by the learned gradient fields. To enhance packing feasibility and optimality, we introduce two key architectural designs: multi-scale feature extraction and coarse-to-fine relation extraction. We conduct experiments on two typical industrial packing domains, considering translations only. Empirically, our approach demonstrates spatial utilization rates comparable to, or even surpassing, those achieved by the teacher algorithm responsible for training data generation. Additionally, it exhibits some level of generalization to shape variations. We are hopeful that this method could pave the way for new possibilities in solving the packing problem.
Abstract:Deep neural networks still struggle on long-tailed image datasets, and one of the reasons is that the imbalance of training data across categories leads to the imbalance of trained model parameters. Motivated by the empirical findings that trained classifiers yield larger weight norms in head classes, we propose to reformulate the recognition probabilities through included angles without re-balancing the classifier weights. Specifically, we calculate the angles between the data feature and the class-wise classifier weights to obtain angle-based prediction results. Inspired by the performance improvement of the predictive form reformulation and the outstanding performance of the widely used two-stage learning framework, we explore the different properties of this angular prediction and propose novel modules to improve the performance of different components in the framework. Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT. Source code will be made publicly available.
Abstract:We propose a distributionally robust learning (DRL) method for unsupervised domain adaptation (UDA) that scales to modern computer vision benchmarks. DRL can be naturally formulated as a competitive two-player game between a predictor and an adversary that is allowed to corrupt the labels, subject to certain constraints, and reduces to incorporating a density ratio between the source and target domains (under the standard log loss). This formulation motivates the use of two neural networks that are jointly trained - a discriminative network between the source and target domains for density-ratio estimation, in addition to the standard classification network. The use of a density ratio in DRL prevents the model from being overconfident on target inputs far away from the source domain. Thus, DRL provides conservative confidence estimation in the target domain, even when the target labels are not available. This conservatism motivates the use of DRL in self-training for sample selection, and we term the approach distributionally robust self-training (DRST). In our experiments, DRST generates more calibrated probabilities and achieves state-of-the-art self-training accuracy on benchmark datasets. We demonstrate that DRST captures shape features more effectively, and reduces the extent of distributional shift during self-training.