Abstract:To enhance the controllability of text-to-image diffusion models, current ControlNet-like models have explored various control signals to dictate image attributes. However, existing methods either handle conditions inefficiently or use a fixed number of conditions, which does not fully address the complexity of multiple conditions and their potential conflicts. This underscores the need for innovative approaches to manage multiple conditions effectively for more reliable and detailed image synthesis. To address this issue, we propose a novel framework, DynamicControl, which supports dynamic combinations of diverse control signals, allowing adaptive selection of different numbers and types of conditions. Our approach begins with a double-cycle controller that generates an initial real score sorting for all input conditions by leveraging pre-trained conditional generation models and discriminative models. This controller evaluates the similarity between extracted conditions and input conditions, as well as the pixel-level similarity with the source image. Then, we integrate a Multimodal Large Language Model (MLLM) to build an efficient condition evaluator. This evaluator optimizes the ordering of conditions based on the double-cycle controller's score ranking. Our method jointly optimizes MLLMs and diffusion models, utilizing MLLMs' reasoning capabilities to facilitate multi-condition text-to-image (T2I) tasks. The final sorted conditions are fed into a parallel multi-control adapter, which learns feature maps from dynamic visual conditions and integrates them to modulate ControlNet, thereby enhancing control over generated images. Through both quantitative and qualitative comparisons, DynamicControl demonstrates its superiority over existing methods in terms of controllability, generation quality and composability under various conditional controls.
Abstract:Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
Abstract:Topological Data Analysis (TDA) has recently gained significant attention in the field of financial prediction. However, the choice of point cloud construction methods, topological feature representations, and classification models has a substantial impact on prediction results. This paper addresses the classification problem of stock index movement. First, we construct point clouds for stock indices using three different methods. Next, we apply TDA to extract topological structures from the point clouds. Four distinct topological features are computed to represent the patterns in the data, and 15 combinations of these features are enumerated and input into six different machine learning models. We evaluate the predictive performance of various TDA configurations by conducting index movement classification tasks on datasets such as CSI, DAX, HSI and FTSE providing insights into the efficiency of different TDA setups.
Abstract:Federated learning holds great potential for enabling large-scale healthcare research and collaboration across multiple centres while ensuring data privacy and security are not compromised. Although numerous recent studies suggest or utilize federated learning based methods in healthcare, it remains unclear which ones have potential clinical utility. This review paper considers and analyzes the most recent studies up to May 2024 that describe federated learning based methods in healthcare. After a thorough review, we find that the vast majority are not appropriate for clinical use due to their methodological flaws and/or underlying biases which include but are not limited to privacy concerns, generalization issues, and communication costs. As a result, the effectiveness of federated learning in healthcare is significantly compromised. To overcome these challenges, we provide recommendations and promising opportunities that might be implemented to resolve these problems and improve the quality of model development in federated learning with healthcare.
Abstract:In recent years, instruction-based image editing methods have garnered significant attention in image editing. However, despite encompassing a wide range of editing priors, these methods are helpless when handling editing tasks that are challenging to accurately describe through language. We propose InstructBrush, an inversion method for instruction-based image editing methods to bridge this gap. It extracts editing effects from exemplar image pairs as editing instructions, which are further applied for image editing. Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization. To explore the ability of instruction inversion methods to guide image editing in open scenarios, we establish a TransformationOriented Paired Benchmark (TOP-Bench), which contains a rich set of scenes and editing types. The creation of this benchmark paves the way for further exploration of instruction inversion. Quantitatively and qualitatively, our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
Abstract:Non-orthogonal multiple access (NOMA) has been widely nominated as an emerging spectral efficiency (SE) multiple access technique for the next generation of wireless communication network. To meet the growing demands in massive connectivity and huge data in transmission, a novel index modulation aided NOMA with the rotation of signal constellation of low power users (IM-NOMA-RC) is developed to the downlink transmission. In the proposed IM-NOMA-RC system, the users are classified into far-user group and near-user group according to their channel conditions, where the rotation constellation based IM operation is performed only on the users who belong to the near-user group that are allocated lower power compared with the far ones to transmit extra information. In the proposed IM-NOMA-RC, all the subcarriers are activated to transmit information to multiple users to achieve higher SE. With the aid of the multiple dimension modulation in IM-NOMA-RC, more users can be supported over an orthogonal resource block. Then, both maximum likelihood (ML) detector and successive interference cancellation (SIC) detector are studied for all the user. Numerical simulation results of the proposed IM-NOMARC scheme are investigate for the ML detector and the SIC detector for each users, which shows that proposed scheme can outperform conventional NOMA.
Abstract:In this work, we introduce a method to fine-tune a Transformer-based generative model for molecular de novo design. Leveraging the superior sequence learning capacity of Transformers over Recurrent Neural Networks (RNNs), our model can generate molecular structures with desired properties effectively. In contrast to the traditional RNN-based models, our proposed method exhibits superior performance in generating compounds predicted to be active against various biological targets, capturing long-term dependencies in the molecular structure sequence. The model's efficacy is demonstrated across numerous tasks, including generating analogues to a query structure and producing compounds with particular attributes, outperforming the baseline RNN-based methods. Our approach can be used for scaffold hopping, library expansion starting from a single molecule, and generating compounds with high predicted activity against biological targets.
Abstract:DNA methylation is a crucial regulator of gene transcription and has been linked to various diseases, including autoimmune diseases and cancers. However, diagnostics based on DNA methylation face challenges due to large feature sets and small sample sizes, resulting in overfitting and suboptimal performance. To address these issues, we propose MIRACLE, a novel interpretable neural network that leverages autoencoder-based multi-task learning to integrate multiple datasets and jointly identify common patterns in DNA methylation. MIRACLE's architecture reflects the relationships between methylation sites, genes, and pathways, ensuring biological interpretability and meaningfulness. The network comprises an encoder and a decoder, with a bottleneck layer representing pathway information as the basic unit of heredity. Customized defined MaskedLinear Layer is constrained by site-gene-pathway graph adjacency matrix information, which provides explainability and expresses the site-gene-pathway hierarchical structure explicitly. And from the embedding, there are different multi-task classifiers to predict diseases. Tested on six datasets, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, psoriasis, and type 1 diabetes, MIRACLE demonstrates robust performance in identifying common functions of DNA methylation across different phenotypes, with higher accuracy in prediction dieseases than baseline methods. By incorporating biological prior knowledge, MIRACLE offers a meaningful and interpretable framework for DNA methylation data analysis in the context of autoimmune diseases.
Abstract:Current methods of blended targets domain adaptation (BTDA) usually infer or consider domain label information but underemphasize hybrid categorical feature structures of targets, which yields limited performance, especially under the label distribution shift. We demonstrate that domain labels are not directly necessary for BTDA if categorical distributions of various domains are sufficiently aligned even facing the imbalance of domains and the label distribution shift of classes. However, we observe that the cluster assumption in BTDA does not comprehensively hold. The hybrid categorical feature space hinders the modeling of categorical distributions and the generation of reliable pseudo labels for categorical alignment. To address these, we propose a categorical domain discriminator guided by uncertainty to explicitly model and directly align categorical distributions $P(Z|Y)$. Simultaneously, we utilize the low-level features to augment the single source features with diverse target styles to rectify the biased classifier $P(Y|Z)$ among diverse targets. Such a mutual conditional alignment of $P(Z|Y)$ and $P(Y|Z)$ forms a mutual reinforced mechanism. Our approach outperforms the state-of-the-art in BTDA even compared with methods utilizing domain labels, especially under the label distribution shift, and in single target DA on DomainNet.
Abstract:Recent state-of-the-art source-free domain adaptation (SFDA) methods have focused on learning meaningful cluster structures in the feature space, which have succeeded in adapting the knowledge from source domain to unlabeled target domain without accessing the private source data. However, existing methods rely on the pseudo-labels generated by source models that can be noisy due to domain shift. In this paper, we study SFDA from the perspective of learning with label noise (LLN). Unlike the label noise in the conventional LLN scenario, we prove that the label noise in SFDA follows a different distribution assumption. We also prove that such a difference makes existing LLN methods that rely on their distribution assumptions unable to address the label noise in SFDA. Empirical evidence suggests that only marginal improvements are achieved when applying the existing LLN methods to solve the SFDA problem. On the other hand, although there exists a fundamental difference between the label noise in the two scenarios, we demonstrate theoretically that the early-time training phenomenon (ETP), which has been previously observed in conventional label noise settings, can also be observed in the SFDA problem. Extensive experiments demonstrate significant improvements to existing SFDA algorithms by leveraging ETP to address the label noise in SFDA.