Abstract:Integrated sensing and communication (ISAC) has been envisioned as a prospective technology to enable ubiquitous sensing and communications in next-generation wireless networks. In contrast to existing works on reconfigurable intelligent surface (RIS) aided ISAC systems using conventional phased arrays (PAs), this paper investigates a frequency diverse array (FDA)-enabled RIS-aided ISAC system, where the FDA aims to provide a distance-angle-dependent beampattern to effectively suppress the clutter, and RIS is employed to establish high-quality links between the BS and users/target. We aim to maximize sum rate by jointly optimizing the BS transmit beamforming vectors, the covariance matrix of the dedicated radar signal, the RIS phase shift matrix, the FDA frequency offsets and the radar receive equalizer, while guaranteeing the required signal-to-clutter-plus-noise ratio (SCNR) of the radar echo signal. To tackle this challenging problem, we first theoretically prove that the dedicated radar signal is unnecessary for enhancing target sensing performance, based on which the original problem is much simplified. Then, we turn our attention to the single-user single-target (SUST) scenario to demonstrate that the FDA-RIS-aided ISAC system always achieves a higher SCNR than its PA-RIS-aided counterpart. Moreover, it is revealed that the SCNR increment exhibits linear growth with the BS transmit power and the number of BS receive antennas. In order to effectively solve this simplified problem, we leverage the fractional programming (FP) theory and subsequently develop an efficient alternating optimization (AO) algorithm based on symmetric alternating direction method of multipliers (SADMM) and successive convex approximation (SCA) techniques. Numerical results demonstrate the superior performance of our proposed algorithm in terms of sum rate and radar SCNR.
Abstract:This paper investigates the unsourced random access (URA) problem with a massive multiple-input multiple-output receiver that serves wireless devices in the near-field of radiation. We employ an uncoupled transmission protocol without appending redundancies to the slot-wise encoded messages. To exploit the channel sparsity for block length reduction while facing the collapsed sparse structure in the angular domain of near-field channels, we propose a sparse channel sampling method that divides the angle-distance (polar) domain based on the maximum permissible coherence. Decoding starts with retrieving active codewords and channels from each slot. We address the issue by leveraging the structured channel sparsity in the spatial and polar domains and propose a novel turbo-based recovery algorithm. Furthermore, we investigate an off-grid compressed sensing method to refine discretely estimated channel parameters over the continuum that improves the detection performance. Afterward, without the assistance of redundancies, we recouple the separated messages according to the similarity of the users' channel information and propose a modified K-medoids method to handle the constraints and collisions involved in channel clustering. Simulations reveal that via exploiting the channel sparsity, the proposed URA scheme achieves high spectral efficiency and surpasses existing multi-slot-based schemes. Moreover, with more measurements provided by the overcomplete channel sampling, the near-field-suited scheme outperforms its counterpart of the far-field.
Abstract:Aiming at providing wireless communication systems with environment-perceptive capacity, emerging integrated sensing and communication (ISAC) technologies face multiple difficulties, especially in balancing the performance trade-off between the communication and radar functions. In this paper, we introduce a reconfigurable intelligent surface (RIS) to assist both data transmission and target detection in a dual-functional ISAC system. To formulate a general optimization framework, diverse communication performance metrics have been taken into account including famous capacity maximization and mean-squared error (MSE) minimization. Whereas the target detection process is modeled as a general likelihood ratio test (GLRT) due to the practical limitations, and the monotonicity of the corresponding detection probability is proved. For the single-user and single-target (SUST) scenario, the minimum transmit power of the ISAC transceiver has been revealed. By exploiting the optimal conditions of the BS design, we validate that the BS is able to realize the maximum power allocation scheme and derive the optimal BS precoder in a semi-closed form. Moreover, an alternating direction method of multipliers (ADMM) based RIS design is proposed to address the optimization of unit-modulus RIS phase shifts. For the sake of further enhancing computational efficiency, we also develop a low-complexity RIS design based on Riemannian gradient descent. Furthermore, the ISAC transceiver design for the multiple-users and multiple-targets (MUMT) scenario is also investigated, where a zero-forcing (ZF) radar receiver is adopted to cancel the interferences. Then optimal BS precoder is derived under the maximum power allocation scheme, and the RIS phase shifts can be optimized by extending the proposed ADMM-based RIS design. Numerical simulation results verify the performance of our proposed transceiver designs.
Abstract:Beamforming design with partial channel estimation and feedback for frequency-division duplexing (FDD) reconfigurable intelligent surface (RIS) assisted systems is considered in this paper. We leverage the observation that path angle information (PAI) varies more slowly than path gain information (PGI). Then, several dominant paths are selected among all the cascaded paths according to the known PAI for maximizing the spectral efficiency of downlink data transmission. To acquire the dominating path gain information (DPGI, also regarded as the path gains of selected dominant paths) at the base station (BS), we propose a DPGI estimation and feedback scheme by jointly beamforming design at BS and RIS. Both the required number of downlink pilot signals and the length of uplink feedback vector are reduced to the number of dominant paths, and thus we achieve a great reduction of the pilot overhead and feedback overhead. Furthermore, we optimize the active BS beamformer and passive RIS beamformer by exploiting the feedback DPGI to further improve the spectral efficiency. From numerical results, we demonstrate the superiority of our proposed algorithms over the conventional schemes.
Abstract:Channel estimation and transmission constitute the most fundamental functional modules of multiple-input multiple-output (MIMO) communication systems. The underlying key tasks corresponding to these modules are training sequence optimization and transceiver optimization. Hence, we jointly optimize the linear transmit precoder and the training sequence of MIMO systems using the metrics of their effective mutual information (MI), effective mean squared error (MSE), effective weighted MI, effective weighted MSE, as well as their effective generic Schur-convex and Schur-concave functions. Both statistical channel state information (CSI) and estimated CSI are considered at the transmitter in the joint optimization. A unified framework termed as joint matrix-monotonic optimization is proposed. Based on this, the optimal precoder matrix and training matrix structures can be derived for both CSI scenarios. Then, based on the optimal matrix structures, our linear transceivers and their training sequences can be jointly optimized. Compared to state-of-the-art benchmark algorithms, the proposed algorithms visualize the bold explicit relationships between the attainable system performance of our linear transceivers conceived and their training sequences, leading to implementation ready recipes. Finally, several numerical results are provided, which corroborate our theoretical results and demonstrate the compelling benefits of our proposed pilot-aided MIMO solutions.
Abstract:This paper investigates joint channel estimation and device activity detection in the LEO satellite-enabled grant-free random access systems with large differential delay and Doppler shift. In addition, the multiple-input multiple-output (MIMO) with orthogonal time-frequency space modulation (OTFS) is utilized to combat the dynamics of the terrestrial-satellite link. To simplify the computation process, we estimate the channel tensor in parallel along the delay dimension. Then, the deep learning and expectation-maximization approach are integrated into the generalized approximate message passing with cross-correlation--based Gaussian prior to capture the channel sparsity in the delay-Doppler-angle domain and learn the hyperparameters. Finally, active devices are detected by computing energy of the estimated channel. Simulation results demonstrate that the proposed algorithms outperform conventional methods.
Abstract:This paper considers the joint channel estimation and device activity detection in the grant-free random access systems, where a large number of Internet-of-Things devices intend to communicate with a low-earth orbit satellite in a sporadic way. In addition, the massive multiple-input multiple-output (MIMO) with orthogonal time-frequency space (OTFS) modulation is adopted to combat the dynamics of the terrestrial-satellite link. We first analyze the input-output relationship of the single-input single-output OTFS when the large delay and Doppler shift both exist, and then extend it to the grant-free random access with massive MIMO-OTFS. Next, by exploring the sparsity of channel in the delay-Doppler-angle domain, a two-dimensional pattern coupled hierarchical prior with the sparse Bayesian learning and covariance-free method (TDSBL-FM) is developed for the channel estimation. Then, the active devices are detected by computing the energy of the estimated channel. Finally, the generalized approximate message passing algorithm combined with the sparse Bayesian learning and two-dimensional convolution (ConvSBL-GAMP) is proposed to decrease the computations of the TDSBL-FM algorithm. Simulation results demonstrate that the proposed algorithms outperform conventional methods.
Abstract:In this paper, we investigate a joint device activity detection (DAD), channel estimation (CE), and data decoding (DD) algorithm for multiple-input multiple-output (MIMO) massive unsourced random access (URA). Different from the state-of-the-art slotted transmission scheme, the data in the proposed framework is split into only two parts. A portion of the data is coded by compressed sensing (CS) and the rest is low-density-parity-check (LDPC) coded. In addition to being part of the data, information bits in the CS phase also undertake the task of interleaving pattern design and channel estimation (CE). The principle of interleave-division multiple access (IDMA) is exploited to reduce the interference among devices in the LDPC phase. Based on the belief propagation (BP) algorithm, a low-complexity iterative message passing (MP) algorithm is utilized to decode the data embedded in these two phases separately. Moreover, combined with successive interference cancellation (SIC), the proposed joint DAD-CE-DD algorithm is performed to further improve performance by utilizing the belief of each other. Additionally, based on the energy detection (ED) and sliding window protocol (SWP), we develop a collision resolution protocol to handle the codeword collision, a common issue in the URA system. In addition to the complexity reduction, the proposed algorithm exhibits a substantial performance enhancement compared to the state-of-the-art in terms of efficiency and accuracy.
Abstract:With the depletion of spectrum, wireless communication systems turn to exploit large antenna arrays to achieve the degree of freedom in space domain, such as millimeter wave massive multi-input multioutput (MIMO), reconfigurable intelligent surface assisted communications and cell-free massive MIMO. In these systems, how to acquire accurate channel state information (CSI) is difficult and becomes a bottleneck of the communication links. In this article, we introduce the concept of channel extrapolation that relies on a small portion of channel parameters to infer the remaining channel parameters. Since the substance of channel extrapolation is a mapping from one parameter subspace to another, we can resort to deep learning (DL), a powerful learning architecture, to approximate such mapping function. Specifically, we first analyze the requirements, conditions and challenges for channel extrapolation. Then, we present three typical extrapolations over the antenna dimension, the frequency dimension, and the physical terminal, respectively. We also illustrate their respective principles, design challenges and DL strategies. It will be seen that channel extrapolation could greatly reduce the transmission overhead and subsequently enhance the performance gains compared with the traditional strategies. In the end, we provide several potential research directions on channel extrapolation for future intelligent communications systems.