Sherman
Abstract:This paper investigates the unsourced random access (URA) problem with a massive multiple-input multiple-output receiver that serves wireless devices in the near-field of radiation. We employ an uncoupled transmission protocol without appending redundancies to the slot-wise encoded messages. To exploit the channel sparsity for block length reduction while facing the collapsed sparse structure in the angular domain of near-field channels, we propose a sparse channel sampling method that divides the angle-distance (polar) domain based on the maximum permissible coherence. Decoding starts with retrieving active codewords and channels from each slot. We address the issue by leveraging the structured channel sparsity in the spatial and polar domains and propose a novel turbo-based recovery algorithm. Furthermore, we investigate an off-grid compressed sensing method to refine discretely estimated channel parameters over the continuum that improves the detection performance. Afterward, without the assistance of redundancies, we recouple the separated messages according to the similarity of the users' channel information and propose a modified K-medoids method to handle the constraints and collisions involved in channel clustering. Simulations reveal that via exploiting the channel sparsity, the proposed URA scheme achieves high spectral efficiency and surpasses existing multi-slot-based schemes. Moreover, with more measurements provided by the overcomplete channel sampling, the near-field-suited scheme outperforms its counterpart of the far-field.
Abstract:Deep learning has significantly advanced wireless sensing technology by leveraging substantial amounts of high-quality training data. However, collecting wireless sensing data encounters diverse challenges, including unavoidable data noise, limited data scale due to significant collection overhead, and the necessity to reacquire data in new environments. Taking inspiration from the achievements of AI-generated content, this paper introduces a signal generation method that achieves data denoising, augmentation, and synthesis by disentangling distinct attributes within the signal, such as individual and environment. The approach encompasses two pivotal modules: structured signal selection and signal disentanglement generation. Structured signal selection establishes a minimal signal set with the target attributes for subsequent attribute disentanglement. Signal disentanglement generation disentangles the target attributes and reassembles them to generate novel signals. Extensive experimental results demonstrate that the proposed method can generate data that closely resembles real-world data on two wireless sensing datasets, exhibiting state-of-the-art performance. Our approach presents a robust framework for comprehending and manipulating attribute-specific information in wireless sensing.
Abstract:Low Earth Orbit (LEO) satellites are being extensively researched in the development of secure Internet of Remote Things (IoRT). In scenarios with miniaturized terminals, the limited transmission power and long transmission distance often lead to low Signal-to-Noise Ratio (SNR) at the satellite receiver, which degrades communication performance. A solution to address this issue is the utilization of cooperative satellites, which can combine signals received from multiple satellites, thereby significantly improve SNR. However, in order to maximize the combination gain, the signal coherent combining is necessary, which requires the carrier frequency and phase of each receiving signal to be aligned. Under low SNR circumstances, carrier parameter estimation can be a significant challenge, especially for short burst transmission with no training sequence. In order to tackle it, we propose an iterative code-aided estimation algorithm for joint Carrier Frequency Offset (CFO) and Carrier Phase Offset (CPO). The Cram\'er-Rao Lower Bound (CRLB) is suggested as the limit on the parameter estimation performance. Simulation results demonstrate that the proposed algorithm can approach Bit Error Rate (BER) performance bound within 0.4 dB with regards to four-satellite collaboration.
Abstract:Recent years have witnessed the great success of vision transformer (ViT), which has achieved state-of-the-art performance on multiple computer vision benchmarks. However, ViT models suffer from vast amounts of parameters and high computation cost, leading to difficult deployment on resource-constrained edge devices. Existing solutions mostly compress ViT models to a compact model but still cannot achieve real-time inference. To tackle this issue, we propose to explore the divisibility of transformer structure, and decompose the large ViT into multiple small models for collaborative inference at edge devices. Our objective is to achieve fast and energy-efficient collaborative inference while maintaining comparable accuracy compared with large ViTs. To this end, we first propose a collaborative inference framework termed DeViT to facilitate edge deployment by decomposing large ViTs. Subsequently, we design a decomposition-and-ensemble algorithm based on knowledge distillation, termed DEKD, to fuse multiple small decomposed models while dramatically reducing communication overheads, and handle heterogeneous models by developing a feature matching module to promote the imitations of decomposed models from the large ViT. Extensive experiments for three representative ViT backbones on four widely-used datasets demonstrate our method achieves efficient collaborative inference for ViTs and outperforms existing lightweight ViTs, striking a good trade-off between efficiency and accuracy. For example, our DeViTs improves end-to-end latency by 2.89$\times$ with only 1.65% accuracy sacrifice using CIFAR-100 compared to the large ViT, ViT-L/16, on the GPU server. DeDeiTs surpasses the recent efficient ViT, MobileViT-S, by 3.54% in accuracy on ImageNet-1K, while running 1.72$\times$ faster and requiring 55.28% lower energy consumption on the edge device.
Abstract:This paper investigates joint channel estimation and device activity detection in the LEO satellite-enabled grant-free random access systems with large differential delay and Doppler shift. In addition, the multiple-input multiple-output (MIMO) with orthogonal time-frequency space modulation (OTFS) is utilized to combat the dynamics of the terrestrial-satellite link. To simplify the computation process, we estimate the channel tensor in parallel along the delay dimension. Then, the deep learning and expectation-maximization approach are integrated into the generalized approximate message passing with cross-correlation--based Gaussian prior to capture the channel sparsity in the delay-Doppler-angle domain and learn the hyperparameters. Finally, active devices are detected by computing energy of the estimated channel. Simulation results demonstrate that the proposed algorithms outperform conventional methods.
Abstract:Recently, deploying deep neural network (DNN) models via collaborative inference, which splits a pre-trained model into two parts and executes them on user equipment (UE) and edge server respectively, becomes attractive. However, the large intermediate feature of DNN impedes flexible decoupling, and existing approaches either focus on the single UE scenario or simply define tasks considering the required CPU cycles, but ignore the indivisibility of a single DNN layer. In this paper, we study the multi-agent collaborative inference scenario, where a single edge server coordinates the inference of multiple UEs. Our goal is to achieve fast and energy-efficient inference for all UEs. To achieve this goal, we first design a lightweight autoencoder-based method to compress the large intermediate feature. Then we define tasks according to the inference overhead of DNNs and formulate the problem as a Markov decision process (MDP). Finally, we propose a multi-agent hybrid proximal policy optimization (MAHPPO) algorithm to solve the optimization problem with a hybrid action space. We conduct extensive experiments with different types of networks, and the results show that our method can reduce up to 56\% of inference latency and save up to 72\% of energy consumption.
Abstract:Recently, the compression and deployment of powerful deep neural networks (DNNs) on resource-limited edge devices to provide intelligent services have become attractive tasks. Although knowledge distillation (KD) is a feasible solution for compression, its requirement on the original dataset raises privacy concerns. In addition, it is common to integrate multiple pretrained models to achieve satisfactory performance. How to compress multiple models into a tiny model is challenging, especially when the original data are unavailable. To tackle this challenge, we propose a framework termed collaborative data-free knowledge distillation via multi-level feature sharing (CDFKD-MFS), which consists of a multi-header student module, an asymmetric adversarial data-free KD module, and an attention-based aggregation module. In this framework, the student model equipped with a multi-level feature-sharing structure learns from multiple teacher models and is trained together with a generator in an asymmetric adversarial manner. When some real samples are available, the attention module adaptively aggregates predictions of the student headers, which can further improve performance. We conduct extensive experiments on three popular computer visual datasets. In particular, compared with the most competitive alternative, the accuracy of the proposed framework is 1.18\% higher on the CIFAR-100 dataset, 1.67\% higher on the Caltech-101 dataset, and 2.99\% higher on the mini-ImageNet dataset.
Abstract:With the ever-growing communication demands and the unceasing miniaturization of mobile devices, the Internet of Things is expanding the amount of mobile terminals to an enormous level. To deal with such numbers of communication data, plenty of base stations (BSs) need to be deployed. However, denser deployments of heterogeneous networks (HetNets) lead to more frequent handovers, which could increase network burden and degrade the users experience, especially in traffic hotspot areas. In this paper, we develop a unified framework to investigate the handover performance of wireless networks with traffic hotspots. Using the stochastic geometry, we derive the theoretical expressions of average distances and handover metrics in HetNets, where the correlations between users and BSs in hotspots are captured. Specifically, the distributions of macro cells are modeled as independent Poisson point processes (PPPs), and the two tiers of small cells outside and inside the hotspots are modeled as PPP and Poisson cluster process (PCP) separately. A modified random waypoint (MRWP) model is also proposed to eliminate the density wave phenomenon in traditional models and to increase the accuracy of handover decision. By combining the PCP and MRWP model, the distributions of distances from a typical terminal to the BSs in different tiers are derived. Afterwards, we derive the expressions of average distances from a typical terminal to different BSs, and reveal that the handover rate, handover failure rate, and ping-pong rate are deduced as the functions of BS density, scattering variance of clustered small cell, user velocity, and threshold of triggered time. Simulation results verify the accuracy of the proposed analytical model and closed-form theoretical expressions.
Abstract:This paper considers the joint channel estimation and device activity detection in the grant-free random access systems, where a large number of Internet-of-Things devices intend to communicate with a low-earth orbit satellite in a sporadic way. In addition, the massive multiple-input multiple-output (MIMO) with orthogonal time-frequency space (OTFS) modulation is adopted to combat the dynamics of the terrestrial-satellite link. We first analyze the input-output relationship of the single-input single-output OTFS when the large delay and Doppler shift both exist, and then extend it to the grant-free random access with massive MIMO-OTFS. Next, by exploring the sparsity of channel in the delay-Doppler-angle domain, a two-dimensional pattern coupled hierarchical prior with the sparse Bayesian learning and covariance-free method (TDSBL-FM) is developed for the channel estimation. Then, the active devices are detected by computing the energy of the estimated channel. Finally, the generalized approximate message passing algorithm combined with the sparse Bayesian learning and two-dimensional convolution (ConvSBL-GAMP) is proposed to decrease the computations of the TDSBL-FM algorithm. Simulation results demonstrate that the proposed algorithms outperform conventional methods.
Abstract:The cell-free MIMO concept relying on hybrid precoding constitutes an innovative technique capable of dramatically increasing the network capacity of millimeter-wave (mmWave) communication systems. It dispenses with the cell boundary of conventional multi-cell MIMO systems, while drastically reducing the power consumption by limiting the number of radio frequency (RF) chains at the access points (APs). In this paper, we aim for maximizing the weighted sum rate (WSR) of mmWave cell-free MIMO systems by conceiving a low-complexity hybrid precoding algorithm. We formulate the WSR optimization problem subject to the transmit power constraint for each AP and the constant-modulus constraint for the phase shifters of the analog precoders. A block coordinate descent (BCD) algorithm is proposed for iteratively solving the problem. In each iteration, the classic Lagrangian multiplier method and the penalty dual decomposition (PDD) method are combined for obtaining near-optimal hybrid analog/digital precoding matrices. Furthermore, we extend our proposed algorithm for deriving closed-form expressions for the precoders of fully digital cell-free MIMO systems. Moreover, we present the convergency analysis and complexity analysis of our proposed method. Finally, our simulation results demonstrate the superiority of the algorithms proposed for both fully digital and hybrid precoding matrices.