Abstract:High-resolution (HR) image perception remains a key challenge in multimodal large language models (MLLMs). To overcome the limitations of existing methods, this paper shifts away from prior dedicated heuristic approaches and revisits the most fundamental idea to HR perception by enhancing the long-context capability of MLLMs, driven by recent advances in long-context techniques like retrieval-augmented generation (RAG) for general LLMs. Towards this end, this paper presents the first study exploring the use of RAG to address HR perception challenges. Specifically, we propose Retrieval-Augmented Perception (RAP), a training-free framework that retrieves and fuses relevant image crops while preserving spatial context using the proposed Spatial-Awareness Layout. To accommodate different tasks, the proposed Retrieved-Exploration Search (RE-Search) dynamically selects the optimal number of crops based on model confidence and retrieval scores. Experimental results on HR benchmarks demonstrate the significant effectiveness of RAP, with LLaVA-v1.5-13B achieving a 43% improvement on $V^*$ Bench and 19% on HR-Bench.
Abstract:Generative large language models are crucial in natural language processing, but they are vulnerable to backdoor attacks, where subtle triggers compromise their behavior. Although backdoor attacks against LLMs are constantly emerging, existing benchmarks remain limited in terms of sufficient coverage of attack, metric system integrity, backdoor attack alignment. And existing pre-trained backdoor attacks are idealized in practice due to resource access constraints. Therefore we establish $\textit{ELBA-Bench}$, a comprehensive and unified framework that allows attackers to inject backdoor through parameter efficient fine-tuning ($\textit{e.g.,}$ LoRA) or without fine-tuning techniques ($\textit{e.g.,}$ In-context-learning). $\textit{ELBA-Bench}$ provides over 1300 experiments encompassing the implementations of 12 attack methods, 18 datasets, and 12 LLMs. Extensive experiments provide new invaluable findings into the strengths and limitations of various attack strategies. For instance, PEFT attack consistently outperform without fine-tuning approaches in classification tasks while showing strong cross-dataset generalization with optimized triggers boosting robustness; Task-relevant backdoor optimization techniques or attack prompts along with clean and adversarial demonstrations can enhance backdoor attack success while preserving model performance on clean samples. Additionally, we introduce a universal toolbox designed for standardized backdoor attack research, with the goal of propelling further progress in this vital area.
Abstract:Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
Abstract:Automated code generation using large language models (LLMs) has gained attention due to its efficiency and adaptability. However, real-world coding tasks or benchmarks like HumanEval and StudentEval often lack dedicated training datasets, challenging existing few-shot prompting approaches that rely on reference examples. Inspired by human metamemory-a cognitive process involving recall and evaluation-we present a novel framework (namely M^2WF) for improving LLMs' one-time code generation. This approach enables LLMs to autonomously generate, evaluate, and utilize synthetic examples to enhance reliability and performance. Unlike prior methods, it minimizes dependency on curated data and adapts flexibly to various coding scenarios. Our experiments demonstrate significant improvements in coding benchmarks, offering a scalable and robust solution for data-free environments. The code and framework will be publicly available on GitHub and HuggingFace.
Abstract:Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
Abstract:Aligning diffusion models with downstream objectives is essential for their practical applications. However, standard alignment methods often struggle with step generalization when directly applied to few-step diffusion models, leading to inconsistent performance across different denoising step scenarios. To address this, we introduce Stepwise Diffusion Policy Optimization (SDPO), a novel alignment method tailored for few-step diffusion models. Unlike prior approaches that rely on a single sparse reward from only the final step of each denoising trajectory for trajectory-level optimization, SDPO incorporates dense reward feedback at every intermediate step. By learning the differences in dense rewards between paired samples, SDPO facilitates stepwise optimization of few-step diffusion models, ensuring consistent alignment across all denoising steps. To promote stable and efficient training, SDPO introduces an online reinforcement learning framework featuring several novel strategies designed to effectively exploit the stepwise granularity of dense rewards. Experimental results demonstrate that SDPO consistently outperforms prior methods in reward-based alignment across diverse step configurations, underscoring its robust step generalization capabilities. Code is avaliable at https://github.com/ZiyiZhang27/sdpo.
Abstract:Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer. Recent research on task arithmetic-based MTL demonstrates that merging the parameters of independently fine-tuned models can effectively achieve MTL. However, existing merging methods primarily seek a static optimal solution within the original model parameter space, which often results in performance degradation due to the inherent diversity among tasks and potential interferences. To address this challenge, in this paper, we propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging. Specifically, we first identify critical (or sensitive) modules by analyzing parameter variations in core modules of Transformer-based models before and after finetuning. Then, our WEMoE statically merges non-critical modules while transforming critical modules into a mixture-of-experts (MoE) structure. During inference, expert modules in the MoE are dynamically merged based on input samples, enabling a more flexible and adaptive merging approach. Building on WEMoE, we further introduce an efficient-and-effective WEMoE (E-WEMoE) method, whose core mechanism involves eliminating non-essential elements in the critical modules of WEMoE and implementing shared routing across multiple MoE modules, thereby significantly reducing both the trainable parameters, the overall parameter count, and computational overhead of the merged model by WEMoE. Experimental results across various architectures and tasks demonstrate that both WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
Abstract:Recent advancements in multimodal fusion have witnessed the remarkable success of vision-language (VL) models, which excel in various multimodal applications such as image captioning and visual question answering. However, building VL models requires substantial hardware resources, where efficiency is restricted by two key factors: the extended input sequence of the language model with vision features demands more computational operations, and a large number of additional learnable parameters increase memory complexity. These challenges significantly restrict the broader applicability of such models. To bridge this gap, we propose ADEM-VL, an efficient vision-language method that tunes VL models based on pretrained large language models (LLMs) by adopting a parameter-free cross-attention mechanism for similarity measurements in multimodal fusion. This approach only requires embedding vision features into the language space, significantly reducing the number of trainable parameters and accelerating both training and inference speeds. To enhance representation learning in fusion module, we introduce an efficient multiscale feature generation scheme that requires only a single forward pass through the vision encoder. Moreover, we propose an adaptive fusion scheme that dynamically discards less relevant visual information for each text token based on its attention score. This ensures that the fusion process prioritizes the most pertinent visual features. With experiments on various tasks including visual question answering, image captioning, and instruction-following, we demonstrate that our framework outperforms existing approaches. Specifically, our method surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset, with reduced training and inference latency, demonstrating the superiority of our framework. The code is available at https://github.com/Hao840/ADEM-VL.
Abstract:Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling combinatorial optimization challenges. However, their practical realization confronts a dilemma: the requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices. To address this dilemma, here we first analyze the convergence behavior of QAOA, uncovering the origins of this dilemma and elucidating the intricate relationship between the employed mixer Hamiltonian, the specific problem at hand, and the permissible maximum circuit depth. Harnessing this understanding, we introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians tailored to distinct tasks and circuit depths. Systematic simulations, encompassing Ising models and weighted Max-Cut instances with up to 64 qubits, substantiate our theoretical findings, highlighting MG-Net's superior performance in terms of both approximation ratio and efficiency.
Abstract:Incremental learning is nontrivial due to severe catastrophic forgetting. Although storing a small amount of data on old tasks during incremental learning is a feasible solution, current strategies still do not 1) adequately address the class bias problem, and 2) alleviate the mutual interference between new and old tasks, and 3) consider the problem of class bias within tasks. This motivates us to propose a joint input and output coordination (JIOC) mechanism to address these issues. This mechanism assigns different weights to different categories of data according to the gradient of the output score, and uses knowledge distillation (KD) to reduce the mutual interference between the outputs of old and new tasks. The proposed mechanism is general and flexible, and can be incorporated into different incremental learning approaches that use memory storage. Extensive experiments show that our mechanism can significantly improve their performance.