Abstract:In this paper, we explore a novel model reusing task tailored for graph neural networks (GNNs), termed as "deep graph reprogramming". We strive to reprogram a pre-trained GNN, without amending raw node features nor model parameters, to handle a bunch of cross-level downstream tasks in various domains. To this end, we propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm. The former one aims to address the challenge of diversified graph feature dimensions for various tasks on the input side, while the latter alleviates the dilemma of fixed per-task-per-model behavior on the model side. For data reprogramming, we specifically devise an elaborated Meta-FeatPadding method to deal with heterogeneous input dimensions, and also develop a transductive Edge-Slimming as well as an inductive Meta-GraPadding approach for diverse homogenous samples. Meanwhile, for model reprogramming, we propose a novel task-adaptive Reprogrammable-Aggregator, to endow the frozen model with larger expressive capacities in handling cross-domain tasks. Experiments on fourteen datasets across node/graph classification/regression, 3D object recognition, and distributed action recognition, demonstrate that the proposed methods yield gratifying results, on par with those by re-training from scratch.
Abstract:The recent work known as Segment Anything (SA) has made significant strides in pushing the boundaries of semantic segmentation into the era of foundation models. The impact of SA has sparked extremely active discussions and ushered in an encouraging new wave of developing foundation models for the diverse tasks in the Euclidean domain, such as object detection and image inpainting. Despite the promising advances led by SA, the concept has yet to be extended to the non-Euclidean graph domain. In this paper, we explore a novel Segment Non-Euclidean Anything (SNA) paradigm that strives to develop foundation models that can handle the diverse range of graph data within the non-Euclidean domain, seeking to expand the scope of SA and lay the groundwork for future research in this direction. To achieve this goal, we begin by discussing the recent achievements in foundation models associated with SA. We then shed light on the unique challenges that arise when applying the SA concept to graph analysis, which involves understanding the differences between the Euclidean and non-Euclidean domains from both the data and task perspectives. Motivated by these observations, we present several preliminary solutions to tackle the challenges of SNA and detail their corresponding limitations, along with several potential directions to pave the way for future SNA research. Experiments on five Open Graph Benchmark (OGB) datasets across various tasks, including graph property classification and regression, as well as multi-label prediction, demonstrate that the performance of the naive SNA solutions has considerable room for improvement, pointing towards a promising avenue for future exploration of Graph General Intelligence.
Abstract:State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching. In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization. The core idea of our approach is to establish accurate and fine-grained content-style correspondences using graph neural networks (GNNs). To this end, we develop an elaborated GNN model with content and style local patches as the graph vertices. The style transfer procedure is then modeled as the attention-based heterogeneous message passing between the style and content nodes in a learnable manner, leading to adaptive many-to-one style-content correlations at the local patch level. In addition, an elaborated deformable graph convolutional operation is introduced for cross-scale style-content matching. Experimental results demonstrate that the proposed semi-parametric image stylization approach yields encouraging results on the challenging style patterns, preserving both global appearance and exquisite details. Furthermore, by controlling the number of edges at the inference stage, the proposed method also triggers novel functionalities like diversified patch-based stylization with a single model.
Abstract:In this paper, we study a novel meta aggregation scheme towards binarizing graph neural networks (GNNs). We begin by developing a vanilla 1-bit GNN framework that binarizes both the GNN parameters and the graph features. Despite the lightweight architecture, we observed that this vanilla framework suffered from insufficient discriminative power in distinguishing graph topologies, leading to a dramatic drop in performance. This discovery motivates us to devise meta aggregators to improve the expressive power of vanilla binarized GNNs, of which the aggregation schemes can be adaptively changed in a learnable manner based on the binarized features. Towards this end, we propose two dedicated forms of meta neighborhood aggregators, an exclusive meta aggregator termed as Greedy Gumbel Neighborhood Aggregator (GNA), and a diffused meta aggregator termed as Adaptable Hybrid Neighborhood Aggregator (ANA). GNA learns to exclusively pick one single optimal aggregator from a pool of candidates, while ANA learns a hybrid aggregation behavior to simultaneously retain the benefits of several individual aggregators. Furthermore, the proposed meta aggregators may readily serve as a generic plugin module into existing full-precision GNNs. Experiments across various domains demonstrate that the proposed method yields results superior to the state of the art.
Abstract:Prior normalization methods rely on affine transformations to produce arbitrary image style transfers, of which the parameters are computed in a pre-defined way. Such manually-defined nature eventually results in the high-cost and shared encoders for both style and content encoding, making style transfer systems cumbersome to be deployed in resource-constrained environments like on the mobile-terminal side. In this paper, we propose a new and generalized normalization module, termed as Dynamic Instance Normalization (DIN), that allows for flexible and more efficient arbitrary style transfers. Comprising an instance normalization and a dynamic convolution, DIN encodes a style image into learnable convolution parameters, upon which the content image is stylized. Unlike conventional methods that use shared complex encoders to encode content and style, the proposed DIN introduces a sophisticated style encoder, yet comes with a compact and lightweight content encoder for fast inference. Experimental results demonstrate that the proposed approach yields very encouraging results on challenging style patterns and, to our best knowledge, for the first time enables an arbitrary style transfer using MobileNet-based lightweight architecture, leading to a reduction factor of more than twenty in computational cost as compared to existing approaches. Furthermore, the proposed DIN provides flexible support for state-of-the-art convolutional operations, and thus triggers novel functionalities, such as uniform-stroke placement for non-natural images and automatic spatial-stroke control.
Abstract:The seminal work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style. This process of using CNNs to render a content image in different styles is referred to as Neural Style Transfer (NST). Since then, NST has become a trending topic both in academic literature and industrial applications. It is receiving increasing attention and a variety of approaches are proposed to either improve or extend the original NST algorithm. In this paper, we aim to provide a comprehensive overview of the current progress towards NST. We first propose a taxonomy of current algorithms in the field of NST. Then, we present several evaluation methods and compare different NST algorithms both qualitatively and quantitatively. The review concludes with a discussion of various applications of NST and open problems for future research. A list of papers discussed in this review, corresponding codes, pre-trained models and more comparison results are publicly available at https://github.com/ycjing/Neural-Style-Transfer-Papers.
Abstract:The Fast Style Transfer methods have been recently proposed to transfer a photograph to an artistic style in real-time. This task involves controlling the stroke size in the stylized results, which remains an open challenge. In this paper, we present a stroke controllable style transfer network that can achieve continuous and spatial stroke size control. By analyzing the factors that influence the stroke size, we propose to explicitly account for the receptive field and the style image scales. We propose a StrokePyramid module to endow the network with adaptive receptive fields, and two training strategies to achieve faster convergence and augment new stroke sizes upon a trained model respectively. By combining the proposed runtime control strategies, our network can achieve continuous changes in stroke sizes and produce distinct stroke sizes in different spatial regions within the same output image.
Abstract:Intelligent fashion outfit composition becomes more and more popular in these years. Some deep learning based approaches reveal competitive composition recently. However, the unexplainable characteristic makes such deep learning based approach cannot meet the the designer, businesses and consumers' urge to comprehend the importance of different attributes in an outfit composition. To realize interpretable and customized fashion outfit compositions, we propose a partitioned embedding network to learn interpretable representations from clothing items. The overall network architecture consists of three components: an auto-encoder module, a supervised attributes module and a multi-independent module. The auto-encoder module serves to encode all useful information into the embedding. In the supervised attributes module, multiple attributes labels are adopted to ensure that different parts of the overall embedding correspond to different attributes. In the multi-independent module, adversarial operation are adopted to fulfill the mutually independent constraint. With the interpretable and partitioned embedding, we then construct an outfit composition graph and an attribute matching map. Given specified attributes description, our model can recommend a ranked list of outfit composition with interpretable matching scores. Extensive experiments demonstrate that 1) the partitioned embedding have unmingled parts which corresponding to different attributes and 2) outfits recommended by our model are more desirable in comparison with the existing methods.