Abstract:In this work, we propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks. The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images. The feasibility of distinguishing natural images from AI-generated ones is grounded in the distribution discrepancy between them. Predictive uncertainty offers an effective approach for capturing distribution shifts, thereby providing insights into detecting AI-generated images. Namely, as the distribution shift between training and testing data increases, model performance typically degrades, often accompanied by increased predictive uncertainty. Therefore, we propose to employ predictive uncertainty to reflect the discrepancies between AI-generated and natural images. In this context, the challenge lies in ensuring that the model has been trained over sufficient natural images to avoid the risk of determining the distribution of natural images as that of generated images. We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images. This leads to a simple yet effective method for detecting AI-generated images using large-scale vision models: images that induce high uncertainty are identified as AI-generated. Comprehensive experiments across multiple benchmarks demonstrate the effectiveness of our method.
Abstract:Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
Abstract:Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses, leading to the sycophancy issue. When challenged by users, LLMs tend to admit mistakes and provide inaccurate responses even if they initially provided the correct answer. Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue, while it typically leads to the degeneration of LLMs' general capability. To address the challenge, we propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective. Specifically, SPT first reveals and verifies a small percentage (<5%) of the basic modules, which significantly affect a particular behavior of LLMs. i.e., sycophancy. Subsequently, SPT merely fine-tunes these identified modules while freezing the rest. To verify the effectiveness of the proposed SPT, we conduct comprehensive experiments, demonstrating that SPT significantly mitigates the sycophancy issue of LLMs (even better than SFT). Moreover, SPT introduces limited or even no side effects on the general capability of LLMs. Our results shed light on how to precisely, effectively, and efficiently explain and improve the targeted ability of LLMs.
Abstract:Prompt learning represents a promising method for adapting pre-trained visual-language models (VLMs) to various downstream tasks by learning a set of text embeddings. One challenge inherent to these methods is the poor generalization performance due to the invalidity of the learned text embeddings for unseen tasks. A straightforward approach to bridge this gap is to freeze the text embeddings in prompts, which results in a lack of capacity to adapt VLMs for downstream tasks. To address this dilemma, we proposeto introduce an External Layer (EnLa) of text branch and learnable visual embeddings of the visual branch for adapting VLMs to downstream tasks. The learnable external layer is built upon valid embeddings of pre-trained CLIP. This design considers the balance of learning capabilities between the two branches. To align the textual and visual features, we propose a novel two-pronged approach: i) we introduce the optimal transport as the discrepancy metric to align the vision and text modalities, and ii) we introducea novel strengthening feature to enhance the interaction between these two modalities. Extensive experiments show that our method performs favorably well on 4 types of representative tasks across 11 datasets compared to the existing prompt learning methods.
Abstract:Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency. Advanced FSSL methods predominantly focus on training a single model on each client. However, this approach could lead to a discrepancy between the objective functions of labeled and unlabeled data, resulting in gradient conflicts. To alleviate gradient conflict, we propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data. In particular, Twin-sight concurrently trains a supervised model with a supervised objective function while training an unsupervised model using an unsupervised objective function. To enhance the synergy between these two models, Twin-sight introduces a neighbourhood-preserving constraint, which encourages the preservation of the neighbourhood relationship among data features extracted by both models. Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings, demonstrating the efficacy of the proposed Twin-sight.
Abstract:This paper tackles the emerging challenge of training generative models within a self-consuming loop, wherein successive generations of models are recursively trained on mixtures of real and synthetic data from previous generations. We construct a theoretical framework to rigorously evaluate how this training regimen impacts the data distributions learned by future models. Specifically, we derive bounds on the total variation (TV) distance between the synthetic data distributions produced by future models and the original real data distribution under various mixed training scenarios. Our analysis demonstrates that this distance can be effectively controlled under the condition that mixed training dataset sizes or proportions of real data are large enough. Interestingly, we further unveil a phase transition induced by expanding synthetic data amounts, proving theoretically that while the TV distance exhibits an initial ascent, it declines beyond a threshold point. Finally, we specialize our general results to diffusion models, delivering nuanced insights such as the efficacy of optimal early stopping within the self-consuming loop.
Abstract:Federated Learning (FL) models often experience client drift caused by heterogeneous data, where the distribution of data differs across clients. To address this issue, advanced research primarily focuses on manipulating the existing gradients to achieve more consistent client models. In this paper, we present an alternative perspective on client drift and aim to mitigate it by generating improved local models. First, we analyze the generalization contribution of local training and conclude that this generalization contribution is bounded by the conditional Wasserstein distance between the data distribution of different clients. Then, we propose FedImpro, to construct similar conditional distributions for local training. Specifically, FedImpro decouples the model into high-level and low-level components, and trains the high-level portion on reconstructed feature distributions. This approach enhances the generalization contribution and reduces the dissimilarity of gradients in FL. Experimental results show that FedImpro can help FL defend against data heterogeneity and enhance the generalization performance of the model.
Abstract:Aligning the recent large language models (LLMs) with computer vision models leads to large vision-language models (LVLMs), which have paved the way for zero-shot image reasoning tasks. However, LVLMs are usually trained on short high-level captions only referring to sparse focus regions in images. Such a ``tunnel vision'' limits LVLMs to exploring other relevant contexts in complex scenes. To address this challenge, we introduce Question-Driven Visual Exploration (QVix), a novel prompting strategy that enhances the exploratory capabilities of LVLMs in zero-shot reasoning tasks. QVix leverages LLMs' strong language prior to generate input-exploratory questions with more details than the original query, guiding LVLMs to explore visual content more comprehensively and uncover subtle or peripheral details. QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment. Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods, highlighting its effectiveness in bridging the gap between complex visual data and LVLMs' exploratory abilities.
Abstract:Optical quantum sensing promises measurement precision beyond classical sensors termed the Heisenberg limit (HL). However, conventional methodologies often rely on prior knowledge of the target system to achieve HL, presenting challenges in practical applications. Addressing this limitation, we introduce an innovative Deep Learning-based Quantum Sensing scheme (DQS), enabling optical quantum sensors to attain HL in agnostic environments. DQS incorporates two essential components: a Graph Neural Network (GNN) predictor and a trigonometric interpolation algorithm. Operating within a data-driven paradigm, DQS utilizes the GNN predictor, trained on offline data, to unveil the intrinsic relationships between the optical setups employed in preparing the probe state and the resulting quantum Fisher information (QFI) after interaction with the agnostic environment. This distilled knowledge facilitates the identification of optimal optical setups associated with maximal QFI. Subsequently, DQS employs a trigonometric interpolation algorithm to recover the unknown parameter estimates for the identified optical setups. Extensive experiments are conducted to investigate the performance of DQS under different settings up to eight photons. Our findings not only offer a new lens through which to accelerate optical quantum sensing tasks but also catalyze future research integrating deep learning and quantum mechanics.
Abstract:Federated learning (FL) typically faces data heterogeneity, i.e., distribution shifting among clients. Sharing clients' information has shown great potentiality in mitigating data heterogeneity, yet incurs a dilemma in preserving privacy and promoting model performance. To alleviate the dilemma, we raise a fundamental question: \textit{Is it possible to share partial features in the data to tackle data heterogeneity?} In this work, we give an affirmative answer to this question by proposing a novel approach called {\textbf{Fed}erated \textbf{Fe}ature \textbf{d}istillation} (FedFed). Specifically, FedFed partitions data into performance-sensitive features (i.e., greatly contributing to model performance) and performance-robust features (i.e., limitedly contributing to model performance). The performance-sensitive features are globally shared to mitigate data heterogeneity, while the performance-robust features are kept locally. FedFed enables clients to train models over local and shared data. Comprehensive experiments demonstrate the efficacy of FedFed in promoting model performance.