Abstract:As the development and application of Large Language Models (LLMs) continue to advance rapidly, enhancing their trustworthiness and aligning them with human preferences has become a critical area of research. Traditional methods rely heavily on extensive data for Reinforcement Learning from Human Feedback (RLHF), but representation engineering offers a new, training-free approach. This technique leverages semantic features to control the representation of LLM's intermediate hidden states, enabling the model to meet specific requirements such as increased honesty or heightened safety awareness. However, a significant challenge arises when attempting to fulfill multiple requirements simultaneously. It proves difficult to encode various semantic contents, like honesty and safety, into a singular semantic feature, restricting its practicality. In this work, we address this issue through ``Sparse Activation Control''. By delving into the intrinsic mechanisms of LLMs, we manage to identify and pinpoint components that are closely related to specific tasks within the model, i.e., attention heads. These heads display sparse characteristics that allow for near-independent control over different tasks. Our experiments, conducted on the open-source Llama series models, have yielded encouraging results. The models were able to align with human preferences on issues of safety, factuality, and bias concurrently.
Abstract:Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
Abstract:Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses, leading to the sycophancy issue. When challenged by users, LLMs tend to admit mistakes and provide inaccurate responses even if they initially provided the correct answer. Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue, while it typically leads to the degeneration of LLMs' general capability. To address the challenge, we propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective. Specifically, SPT first reveals and verifies a small percentage (<5%) of the basic modules, which significantly affect a particular behavior of LLMs. i.e., sycophancy. Subsequently, SPT merely fine-tunes these identified modules while freezing the rest. To verify the effectiveness of the proposed SPT, we conduct comprehensive experiments, demonstrating that SPT significantly mitigates the sycophancy issue of LLMs (even better than SFT). Moreover, SPT introduces limited or even no side effects on the general capability of LLMs. Our results shed light on how to precisely, effectively, and efficiently explain and improve the targeted ability of LLMs.
Abstract:To build safe and reliable graph machine learning systems, unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection (GLOD) have received significant attention in recent years. Though those two lines of research indeed share the same objective, they have been studied independently in the community due to distinct evaluation setups, creating a gap that hinders the application and evaluation of methods from one to the other. To bridge the gap, in this work, we present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method), a comprehensive evaluation framework that unifies GLAD and GLOD under the concept of generalized graph-level OOD detection. Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios, facilitating the comparison of 16 representative GLAD/GLOD methods. We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods, shedding light on their strengths and limitations. Furthermore, we provide an open-source codebase (https://github.com/UB-GOLD/UB-GOLD) of our method to foster reproducible research and outline potential directions for future investigations based on our insights.
Abstract:The open-world test dataset is often mixed with out-of-distribution (OOD) samples, where the deployed models will struggle to make accurate predictions. Traditional detection methods need to trade off OOD detection and in-distribution (ID) classification performance since they share the same representation learning model. In this work, we propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs. Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection. Although it is conceptually simple, extending this vanilla framework to practical detection applications is still limited by two significant challenges. First, the popular similarity metrics based on Euclidian distance fail to consider the complex graph structure. Second, the generative model involving iterative denoising steps is time-consuming especially when it runs on the enormous pool of drugs. To address these challenges, our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations: i) An effective metric to comprehensively quantify the matching degree of input and reconstructed molecules; ii) A creative graph generator to construct prototypical graphs that are in line with ID but away from OOD; iii) An efficient and scalable OOD detector to compare the similarity between test samples and pre-constructed prototypical graphs and omit the generative process on every new molecule. Extensive experiments on ten benchmark datasets and six baselines are conducted to demonstrate our superiority.
Abstract:This work presents a distributed algorithm for resolving cooperative multi-vehicle conflicts in highly constrained spaces. By formulating the conflict resolution problem as a Multi-Agent Reinforcement Learning (RL) problem, we can train a policy offline to drive the vehicles towards their destinations safely and efficiently in a simplified discrete environment. During the online execution, each vehicle first simulates the interaction among vehicles with the trained policy to obtain its strategy, which is used to guide the computation of a reference trajectory. A distributed Model Predictive Controller (MPC) is then proposed to track the reference while avoiding collisions. The preliminary results show that the combination of RL and distributed MPC has the potential to guide vehicles to resolve conflicts safely and smoothly while being less computationally demanding than the centralized approach.
Abstract:We present a novel method to address the problem of multi-vehicle conflict resolution in highly constrained spaces. An optimal control problem is formulated to incorporate nonlinear, non-holonomic vehicle dynamics and exact collision avoidance constraints. A solution to the problem can be obtained by first learning configuration strategies with reinforcement learning (RL) in a simplified discrete environment, and then using these strategies to shape the constraint space of the original problem. Simulation results show that our method can explore efficient actions to resolve conflicts in confined space and generate dexterous maneuvers that are both collision-free and kinematically feasible.
Abstract:The problem of multimodal intent and trajectory prediction for human-driven vehicles in parking lots is addressed in this paper. Using models designed with CNN and Transformer networks, we extract temporal-spatial and contextual information from trajectory history and local bird's eye view (BEV) semantic images, and generate predictions about intent distribution and future trajectory sequences. Our methods outperforms existing models in accuracy, while allowing an arbitrary number of modes, encoding complex multi-agent scenarios, and adapting to different parking maps. In addition, we present the first public human driving dataset in parking lot with high resolution and rich traffic scenarios for relevant research in this field.
Abstract:Unsupervised Person Re-identification (U-ReID) with pseudo labeling recently reaches a competitive performance compared to fully-supervised ReID methods based on modern clustering algorithms. However, such clustering-based scheme becomes computationally prohibitive for large-scale datasets. How to efficiently leverage endless unlabeled data with limited computing resources for better U-ReID is under-explored. In this paper, we make the first attempt to the large-scale U-ReID and propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL). MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training. After that, the learned cluster centroids, termed as meta-prototypes in our MCL, are regarded as a proxy annotator to softly annotate the rest unlabeled data for further polishing the model. To alleviate the potential noisy labeling issue in the polishment phase, we enforce two well-designed loss constraints to promise intra-identity consistency and inter-identity strong correlation. For multiple widely-used U-ReID benchmarks, our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
Abstract:Knowledge Distillation (KD) is a popular technique to transfer knowledge from a teacher model or ensemble to a student model. Its success is generally attributed to the privileged information on similarities/consistency between the class distributions or intermediate feature representations of the teacher model and the student model. However, directly pushing the student model to mimic the probabilities/features of the teacher model to a large extent limits the student model in learning undiscovered knowledge/features. In this paper, we propose a novel inheritance and exploration knowledge distillation framework (IE-KD), in which a student model is split into two parts - inheritance and exploration. The inheritance part is learned with a similarity loss to transfer the existing learned knowledge from the teacher model to the student model, while the exploration part is encouraged to learn representations different from the inherited ones with a dis-similarity loss. Our IE-KD framework is generic and can be easily combined with existing distillation or mutual learning methods for training deep neural networks. Extensive experiments demonstrate that these two parts can jointly push the student model to learn more diversified and effective representations, and our IE-KD can be a general technique to improve the student network to achieve SOTA performance. Furthermore, by applying our IE-KD to the training of two networks, the performance of both can be improved w.r.t. deep mutual learning. The code and models of IE-KD will be make publicly available at https://github.com/yellowtownhz/IE-KD.