Abstract:There has been a growing interest in extracting formal descriptions of the system behaviors from data. Signal Temporal Logic (STL) is an expressive formal language used to describe spatial-temporal properties with interpretability. This paper introduces TLINet, a neural-symbolic framework for learning STL formulas. The computation in TLINet is differentiable, enabling the usage of off-the-shelf gradient-based tools during the learning process. In contrast to existing approaches, we introduce approximation methods for max operator designed specifically for temporal logic-based gradient techniques, ensuring the correctness of STL satisfaction evaluation. Our framework not only learns the structure but also the parameters of STL formulas, allowing flexible combinations of operators and various logical structures. We validate TLINet against state-of-the-art baselines, demonstrating that our approach outperforms these baselines in terms of interpretability, compactness, rich expressibility, and computational efficiency.
Abstract:Large Language Model (LLM)-based agents have demonstrated remarkable effectiveness. However, their performance can be compromised in data science scenarios that require real-time data adjustment, expertise in optimization due to complex dependencies among various tasks, and the ability to identify logical errors for precise reasoning. In this study, we introduce the Data Interpreter, a solution designed to solve with code that emphasizes three pivotal techniques to augment problem-solving in data science: 1) dynamic planning with hierarchical graph structures for real-time data adaptability;2) tool integration dynamically to enhance code proficiency during execution, enriching the requisite expertise;3) logical inconsistency identification in feedback, and efficiency enhancement through experience recording. We evaluate the Data Interpreter on various data science and real-world tasks. Compared to open-source baselines, it demonstrated superior performance, exhibiting significant improvements in machine learning tasks, increasing from 0.86 to 0.95. Additionally, it showed a 26% increase in the MATH dataset and a remarkable 112% improvement in open-ended tasks. The solution will be released at https://github.com/geekan/MetaGPT.
Abstract:Time-series data can represent the behaviors of autonomous systems, such as drones and self-driving cars. The problem of binary and multi-class classification has received a lot of attention in this field. Neural networks represent a popular approach to classifying data; However, they lack interpretability, which poses a significant challenge in extracting meaningful information from them. Signal Temporal Logic (STL) is a formalism to describe the properties of timed behaviors. We propose a method that combines all of the above: neural networks that represent STL specifications for multi-class classification of time-series data. We offer two key contributions: 1) We introduce a notion of margin for multi-class classification, and 2) we introduce the use of STL-based attributes for enhancing the interpretability of the results. We evaluate our method on two datasets and compare with state-of-the-art baselines.
Abstract:Imitation learning methods have demonstrated considerable success in teaching autonomous systems complex tasks through expert demonstrations. However, a limitation of these methods is their lack of interpretability, particularly in understanding the specific task the learning agent aims to accomplish. In this paper, we propose a novel imitation learning method that combines Signal Temporal Logic (STL) inference and control synthesis, enabling the explicit representation of the task as an STL formula. This approach not only provides a clear understanding of the task but also allows for the incorporation of human knowledge and adaptation to new scenarios through manual adjustments of the STL formulae. Additionally, we employ a Generative Adversarial Network (GAN)-inspired training approach for both the inference and the control policy, effectively narrowing the gap between the expert and learned policies. The effectiveness of our algorithm is demonstrated through two case studies, showcasing its practical applicability and adaptability.
Abstract:Knowledge distillation is one of the methods for model compression, and existing knowledge distillation techniques focus on how to improve the distillation algorithm so as to enhance the distillation efficiency. This paper introduces dynamic incremental learning into knowledge distillation and proposes a distillation strategy for education distillation. Specifically, it is proposed to take fragmented student models divided from the complete student model as lower-grade models. As the grade level rises, fragmented student models deepen in conjunction with designed teaching reference layers, while learning and distilling from more teacher models. By moving from lower to higher grades, fragmented student models were gradually integrated into a complete target student model, and the performance of the student models gradually improved from lower to higher grades of the stage. Education distillation strategies combined with distillation algorithms outperform the results of single distillation algorithms on the public dataset CIFAR100,Caltech256, Food-101 dataset.
Abstract:Machine learning techniques using neural networks have achieved promising success for time-series data classification. However, the models that they produce are challenging to verify and interpret. In this paper, we propose an explainable neural-symbolic framework for the classification of time-series behaviors. In particular, we use an expressive formal language, namely Signal Temporal Logic (STL), to constrain the search of the computation graph for a neural network. We design a novel time function and sparse softmax function to improve the soundness and precision of the neural-STL framework. As a result, we can efficiently learn a compact STL formula for the classification of time-series data through off-the-shelf gradient-based tools. We demonstrate the computational efficiency, compactness, and interpretability of the proposed method through driving scenarios and naval surveillance case studies, compared with state-of-the-art baselines.