Nankai University
Abstract:While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
Abstract:Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.
Abstract:With the rapid advancement of remote sensing technology, high-resolution multi-modal imagery is now more widely accessible. Conventional Object detection models are trained on a single dataset, often restricted to a specific imaging modality and annotation format. However, such an approach overlooks the valuable shared knowledge across multi-modalities and limits the model's applicability in more versatile scenarios. This paper introduces a new task called Multi-Modal Datasets and Multi-Task Object Detection (M2Det) for remote sensing, designed to accurately detect horizontal or oriented objects from any sensor modality. This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization. To address these, we establish a benchmark dataset and propose a unified model, SM3Det (Single Model for Multi-Modal datasets and Multi-Task object Detection). SM3Det leverages a grid-level sparse MoE backbone to enable joint knowledge learning while preserving distinct feature representations for different modalities. Furthermore, it integrates a consistency and synchronization optimization strategy using dynamic learning rate adjustment, allowing it to effectively handle varying levels of learning difficulty across modalities and tasks. Extensive experiments demonstrate SM3Det's effectiveness and generalizability, consistently outperforming specialized models on individual datasets. The code is available at https://github.com/zcablii/SM3Det.
Abstract:We present TAR3D, a novel framework that consists of a 3D-aware Vector Quantized-Variational AutoEncoder (VQ-VAE) and a Generative Pre-trained Transformer (GPT) to generate high-quality 3D assets. The core insight of this work is to migrate the multimodal unification and promising learning capabilities of the next-token prediction paradigm to conditional 3D object generation. To achieve this, the 3D VQ-VAE first encodes a wide range of 3D shapes into a compact triplane latent space and utilizes a set of discrete representations from a trainable codebook to reconstruct fine-grained geometries under the supervision of query point occupancy. Then, the 3D GPT, equipped with a custom triplane position embedding called TriPE, predicts the codebook index sequence with prefilling prompt tokens in an autoregressive manner so that the composition of 3D geometries can be modeled part by part. Extensive experiments on ShapeNet and Objaverse demonstrate that TAR3D can achieve superior generation quality over existing methods in text-to-3D and image-to-3D tasks
Abstract:Open-vocabulary image segmentation has been advanced through the synergy between mask generators and vision-language models like Contrastive Language-Image Pre-training (CLIP). Previous approaches focus on generating masks while aligning mask features with text embeddings during training. In this paper, we observe that relying on generated low-quality masks can weaken the alignment of vision and language in regional representations. This motivates us to present a new fine-tuning framework, named MaskCLIP++, which uses ground-truth masks instead of generated masks to enhance the mask classification capability of CLIP. Due to the limited diversity of image segmentation datasets with mask annotations, we propose incorporating a consistency alignment constraint during fine-tuning, which alleviates categorical bias toward the fine-tuning dataset. After low-cost fine-tuning, combining with the mask generator in previous state-of-the-art mask-based open vocabulary segmentation methods, we achieve performance improvements of +1.7, +2.3, +2.1, +3.1, and +0.3 mIoU on the A-847, PC-459, A-150, PC-59, and PAS-20 datasets, respectively.
Abstract:Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text prompt inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-embedded Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple universal attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. To finalize the attributes for downstream tasks, we propose a differentiable attribute search method that learns to identify representative and suitable attributes from a candidate pool summarized by a large language model. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing prompt format of textual-based methods, offering general improvements at a negligible computational cost. Extensive experiments on 11 datasets demonstrate the effectiveness of our method.
Abstract:Pre-trained vision-language models (VLMs), such as CLIP, have demonstrated impressive zero-shot recognition capability, but still underperform in dense prediction tasks. Self-distillation recently is emerging as a promising approach for fine-tuning VLMs to better adapt to local regions without requiring extensive annotations. However, previous state-of-the-art approaches often suffer from significant `foreground bias', where models tend to wrongly identify background regions as foreground objects. To alleviate this issue, we propose DenseVLM, a framework designed to learn unbiased region-language alignment from powerful pre-trained VLM representations. By leveraging the pre-trained VLM to retrieve categories for unlabeled regions, DenseVLM effectively decouples the interference between foreground and background region features, ensuring that each region is accurately aligned with its corresponding category. We show that DenseVLM can be seamlessly integrated into open-vocabulary object detection and image segmentation tasks, leading to notable performance improvements. Furthermore, it exhibits promising zero-shot scalability when training on more extensive and diverse datasets.
Abstract:Masked image modeling has achieved great success in learning representations but is limited by the huge computational costs. One cost-saving strategy makes the decoder reconstruct only a subset of masked tokens and throw the others, and we refer to this method as partial reconstruction. However, it also degrades the representation quality. Previous methods mitigate this issue by throwing tokens with minimal information using temporal redundancy inaccessible for static images or attention maps that incur extra costs and complexity. To address these limitations, we propose a progressive reconstruction strategy and a furthest sampling strategy to reconstruct those thrown tokens in an extremely lightweight way instead of completely abandoning them. This approach involves all masked tokens in supervision to ensure adequate pre-training, while maintaining the cost-reduction benefits of partial reconstruction. We validate the effectiveness of the proposed method across various existing frameworks. For example, when throwing 50% patches, we can achieve lossless performance of the ViT-B/16 while saving 28% FLOPs and 36% memory usage compared to standard MAE. Our source code will be made publicly available
Abstract:Vision representation learning, especially self-supervised learning, is pivotal for various vision applications. Ensemble learning has also succeeded in enhancing the performance and robustness of the vision models. However, traditional ensemble strategies are impractical for representation learning, especially self-supervised representation learning that requires large-scale datasets and long schedules. This is because they require k times more training and inference computation costs for an ensemble of k models. Differently, we introduce Multi-Token Enhancing (MTE) that extracts multiple auxiliary tokens simultaneously from a single model to enhance representation learning, while incurring minimal additional training costs and no additional inference costs. These auxiliary tokens, including auxiliary CLS tokens and adaptively pooled tokens, capture complementary information due to their differences. Meanwhile, to address the increase in inference costs, we distill the knowledge acquired by the auxiliary tokens into a global token during pre-training. Consequently, we can discard the auxiliary tokens during inference without incurring additional costs. Our MTE is compatible with various self-supervised loss functions and architectures, consistently improving performances across different downstream tasks. Our source code will be made publicly available.
Abstract:Existing object detection methods often consider sRGB input, which was compressed from RAW data using ISP originally designed for visualization. However, such compression might lose crucial information for detection, especially under complex light and weather conditions. We introduce the AODRaw dataset, which offers 7,785 high-resolution real RAW images with 135,601 annotated instances spanning 62 categories, capturing a broad range of indoor and outdoor scenes under 9 distinct light and weather conditions. Based on AODRaw that supports RAW and sRGB object detection, we provide a comprehensive benchmark for evaluating current detection methods. We find that sRGB pre-training constrains the potential of RAW object detection due to the domain gap between sRGB and RAW, prompting us to directly pre-train on the RAW domain. However, it is harder for RAW pre-training to learn rich representations than sRGB pre-training due to the camera noise. To assist RAW pre-training, we distill the knowledge from an off-the-shelf model pre-trained on the sRGB domain. As a result, we achieve substantial improvements under diverse and adverse conditions without relying on extra pre-processing modules. Code and dataset are available at https://github.com/lzyhha/AODRaw.