Princeton University
Abstract:Recently, large language models (LLMs) have shown strong potential in code generation tasks. However, there are still gaps before they can be fully applied in actual software development processes. Accurately assessing the code generation capabilities of large language models has become an important basis for evaluating and improving the models. Some existing works have constructed datasets to evaluate the capabilities of these models. However, the current evaluation process may encounter the illusion of "Specialist in Familiarity", primarily due to three gaps: the exposure of target code, case timeliness, and dependency availability. The fundamental reason for these gaps is that the code in current datasets may have been extensively exposed and exercised during the training phase, and due to the continuous training and development of LLM, their timeliness has been severely compromised. The key to solve the problem is to, as much as possible, evaluate the LLMs using code that they have not encountered before. Thus, the fundamental idea in this paper is to draw on the concept of code obfuscation, changing code at different levels while ensuring the functionality and output. To this end, we build a code-obfuscation based benchmark OBFUSEVAL. We first collect 1,354 raw cases from five real-world projects, including function description and code. Then we use three-level strategy (symbol, structure and semantic) to obfuscate descriptions, code and context dependencies. We evaluate four LLMs on OBFU- SEVAL and compared the effectiveness of different obfuscation strategy. We use official test suites of these projects to evaluate the generated code. The results show that after obfuscation, the average decrease ratio of test pass rate can up to 62.5%.
Abstract:Recent advances in prototypical learning have shown remarkable potential to provide useful decision interpretations associating activation maps and predictions with class-specific training prototypes. Such prototypical learning has been well-studied for various single-label diseases, but for quite relevant and more challenging multi-label diagnosis, where multiple diseases are often concurrent within an image, existing prototypical learning models struggle to obtain meaningful activation maps and effective class prototypes due to the entanglement of the multiple diseases. In this paper, we present a novel Cross- and Intra-image Prototypical Learning (CIPL) framework, for accurate multi-label disease diagnosis and interpretation from medical images. CIPL takes advantage of common cross-image semantics to disentangle the multiple diseases when learning the prototypes, allowing a comprehensive understanding of complicated pathological lesions. Furthermore, we propose a new two-level alignment-based regularisation strategy that effectively leverages consistent intra-image information to enhance interpretation robustness and predictive performance. Extensive experiments show that our CIPL attains the state-of-the-art (SOTA) classification accuracy in two public multi-label benchmarks of disease diagnosis: thoracic radiography and fundus images. Quantitative interpretability results show that CIPL also has superiority in weakly-supervised thoracic disease localisation over other leading saliency- and prototype-based explanation methods.
Abstract:Augmenting the multi-step reasoning abilities of Large Language Models (LLMs) has been a persistent challenge. Recently, verification has shown promise in improving solution consistency by evaluating generated outputs. However, current verification approaches suffer from sampling inefficiencies, requiring a large number of samples to achieve satisfactory performance. Additionally, training an effective verifier often depends on extensive process supervision, which is costly to acquire. In this paper, we address these limitations by introducing a novel verification method based on Twisted Sequential Monte Carlo (TSMC). TSMC sequentially refines its sampling effort to focus exploration on promising candidates, resulting in more efficient generation of high-quality solutions. We apply TSMC to LLMs by estimating the expected future rewards at partial solutions. This approach results in a more straightforward training target that eliminates the need for step-wise human annotations. We empirically demonstrate the advantages of our method across multiple math benchmarks, and also validate our theoretical analysis of both our approach and existing verification methods.
Abstract:Code generation aims to automatically generate code from input requirements, significantly enhancing development efficiency. Recent large language models (LLMs) based approaches have shown promising results and revolutionized code generation task. Despite the promising performance, LLMs often generate contents with hallucinations, especially for the code generation scenario requiring the handling of complex contextual dependencies in practical development process. Although previous study has analyzed hallucinations in LLM-powered code generation, the study is limited to standalone function generation. In this paper, we conduct an empirical study to study the phenomena, mechanism, and mitigation of LLM hallucinations within more practical and complex development contexts in repository-level generation scenario. First, we manually examine the code generation results from six mainstream LLMs to establish a hallucination taxonomy of LLM-generated code. Next, we elaborate on the phenomenon of hallucinations, analyze their distribution across different models. We then analyze causes of hallucinations and identify four potential factors contributing to hallucinations. Finally, we propose an RAG-based mitigation method, which demonstrates consistent effectiveness in all studied LLMs. The replication package including code, data, and experimental results is available at https://github.com/DeepSoftwareAnalytics/LLMCodingHallucination
Abstract:Recent advancements in deep learning have shown impressive results in image and video denoising, leveraging extensive pairs of noisy and noise-free data for supervision. However, the challenge of acquiring paired videos for dynamic scenes hampers the practical deployment of deep video denoising techniques. In contrast, this obstacle is less pronounced in image denoising, where paired data is more readily available. Thus, a well-trained image denoiser could serve as a reliable spatial prior for video denoising. In this paper, we propose a novel unsupervised video denoising framework, named ``Temporal As a Plugin'' (TAP), which integrates tunable temporal modules into a pre-trained image denoiser. By incorporating temporal modules, our method can harness temporal information across noisy frames, complementing its power of spatial denoising. Furthermore, we introduce a progressive fine-tuning strategy that refines each temporal module using the generated pseudo clean video frames, progressively enhancing the network's denoising performance. Compared to other unsupervised video denoising methods, our framework demonstrates superior performance on both sRGB and raw video denoising datasets.
Abstract:Recent breakthroughs in large language models (LLMs) offer unprecedented natural language understanding and generation capabilities. However, existing surveys on LLMs in biomedicine often focus on specific applications or model architectures, lacking a comprehensive analysis that integrates the latest advancements across various biomedical domains. This review, based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv, provides an in-depth examination of the current landscape, applications, challenges, and prospects of LLMs in biomedicine, distinguishing itself by focusing on the practical implications of these models in real-world biomedical contexts. Firstly, we explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine, among others, with insights drawn from 137 key studies. Then, we discuss adaptation strategies of LLMs, including fine-tuning methods for both uni-modal and multi-modal LLMs to enhance their performance in specialized biomedical contexts where zero-shot fails to achieve, such as medical question answering and efficient processing of biomedical literature. Finally, we discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics due to the sensitive nature of biomedical data, the need for highly reliable model outputs, and the ethical implications of deploying AI in healthcare. To address these challenges, we also identify future research directions of LLM in biomedicine including federated learning methods to preserve data privacy and integrating explainable AI methodologies to enhance the transparency of LLMs.
Abstract:We study convex optimization problems under differential privacy (DP). With heavy-tailed gradients, existing works achieve suboptimal rates. The main obstacle is that existing gradient estimators have suboptimal tail properties, resulting in a superfluous factor of $d$ in the union bound. In this paper, we explore algorithms achieving optimal rates of DP optimization with heavy-tailed gradients. Our first method is a simple clipping approach. Under bounded $p$-th order moments of gradients, with $n$ samples, it achieves $\tilde{O}(\sqrt{d/n}+\sqrt{d}(\sqrt{d}/n\epsilon)^{1-1/p})$ population risk with $\epsilon\leq 1/\sqrt{d}$. We then propose an iterative updating method, which is more complex but achieves this rate for all $\epsilon\leq 1$. The results significantly improve over existing methods. Such improvement relies on a careful treatment of the tail behavior of gradient estimators. Our results match the minimax lower bound in \cite{kamath2022improved}, indicating that the theoretical limit of stochastic convex optimization under DP is achievable.
Abstract:We present foundation language models developed to power Apple Intelligence features, including a ~3 billion parameter model designed to run efficiently on devices and a large server-based language model designed for Private Cloud Compute. These models are designed to perform a wide range of tasks efficiently, accurately, and responsibly. This report describes the model architecture, the data used to train the model, the training process, how the models are optimized for inference, and the evaluation results. We highlight our focus on Responsible AI and how the principles are applied throughout the model development.
Abstract:Shadow removal aims at restoring the image content within shadow regions, pursuing a uniform distribution of illumination that is consistent between shadow and non-shadow regions. {Comparing to other image restoration tasks, there are two unique challenges in shadow removal:} 1) The patterns of shadows are arbitrary, varied, and often have highly complex trace structures, making ``trace-less'' image recovery difficult. 2) The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas. Recent developments in this field are primarily driven by deep learning-based solutions, employing a variety of learning strategies, network architectures, loss functions, and training data. Nevertheless, a thorough and insightful review of deep learning-based shadow removal techniques is still lacking. In this paper, we are the first to provide a comprehensive survey to cover various aspects ranging from technical details to applications. We highlight the major advancements in deep learning-based single-image shadow removal methods, thoroughly review previous research across various categories, and provide insights into the historical progression of these developments. Additionally, we summarize performance comparisons both quantitatively and qualitatively. Beyond the technical aspects of shadow removal methods, we also explore potential future directions for this field.
Abstract:Audio-visual segmentation (AVS) is an emerging task that aims to accurately segment sounding objects based on audio-visual cues. The success of AVS learning systems depends on the effectiveness of cross-modal interaction. Such a requirement can be naturally fulfilled by leveraging transformer-based segmentation architecture due to its inherent ability to capture long-range dependencies and flexibility in handling different modalities. However, the inherent training issues of transformer-based methods, such as the low efficacy of cross-attention and unstable bipartite matching, can be amplified in AVS, particularly when the learned audio query does not provide a clear semantic clue. In this paper, we address these two issues with the new Class-conditional Prompting Machine (CPM). CPM improves the bipartite matching with a learning strategy combining class-agnostic queries with class-conditional queries. The efficacy of cross-modal attention is upgraded with new learning objectives for the audio, visual and joint modalities. We conduct experiments on AVS benchmarks, demonstrating that our method achieves state-of-the-art (SOTA) segmentation accuracy.