Abstract:Preference learning is critical for aligning large language models (LLMs) with human values, yet its success hinges on high-quality datasets comprising three core components: Preference \textbf{A}nnotations, \textbf{I}nstructions, and \textbf{R}esponse Pairs. Current approaches conflate these components, obscuring their individual impacts and hindering systematic optimization. In this work, we propose \textbf{AIR}, a component-wise analysis framework that systematically isolates and optimizes each component while evaluating their synergistic effects. Through rigorous experimentation, AIR reveals actionable principles: annotation simplicity (point-wise generative scoring), instruction inference stability (variance-based filtering across LLMs), and response pair quality (moderate margins + high absolute scores). When combined, these principles yield +5.3 average gains over baseline method, even with only 14k high-quality pairs. Our work shifts preference dataset design from ad hoc scaling to component-aware optimization, offering a blueprint for efficient, reproducible alignment.
Abstract:Plug-and-play (PnP) methods offer an iterative strategy for solving image restoration (IR) problems in a zero-shot manner, using a learned \textit{discriminative denoiser} as the implicit prior. More recently, a sampling-based variant of this approach, which utilizes a pre-trained \textit{generative diffusion model}, has gained great popularity for solving IR problems through stochastic sampling. The IR results using PnP with a pre-trained diffusion model demonstrate distinct advantages compared to those using discriminative denoisers, \ie improved perceptual quality while sacrificing the data fidelity. The unsatisfactory results are due to the lack of integration of these strategies in the IR tasks. In this work, we propose a novel zero-shot IR scheme, dubbed Reconciling Diffusion Model in Dual (RDMD), which leverages only a \textbf{single} pre-trained diffusion model to construct \textbf{two} complementary regularizers. Specifically, the diffusion model in RDMD will iteratively perform deterministic denoising and stochastic sampling, aiming to achieve high-fidelity image restoration with appealing perceptual quality. RDMD also allows users to customize the distortion-perception tradeoff with a single hyperparameter, enhancing the adaptability of the restoration process in different practical scenarios. Extensive experiments on several IR tasks demonstrate that our proposed method could achieve superior results compared to existing approaches on both the FFHQ and ImageNet datasets.
Abstract:Recent advancements in deep learning have shown impressive results in image and video denoising, leveraging extensive pairs of noisy and noise-free data for supervision. However, the challenge of acquiring paired videos for dynamic scenes hampers the practical deployment of deep video denoising techniques. In contrast, this obstacle is less pronounced in image denoising, where paired data is more readily available. Thus, a well-trained image denoiser could serve as a reliable spatial prior for video denoising. In this paper, we propose a novel unsupervised video denoising framework, named ``Temporal As a Plugin'' (TAP), which integrates tunable temporal modules into a pre-trained image denoiser. By incorporating temporal modules, our method can harness temporal information across noisy frames, complementing its power of spatial denoising. Furthermore, we introduce a progressive fine-tuning strategy that refines each temporal module using the generated pseudo clean video frames, progressively enhancing the network's denoising performance. Compared to other unsupervised video denoising methods, our framework demonstrates superior performance on both sRGB and raw video denoising datasets.