Abstract:Understanding the inner mechanisms of black-box foundation models (FMs) is essential yet challenging in artificial intelligence and its applications. Over the last decade, the long-running focus has been on their explainability, leading to the development of post-hoc explainable methods to rationalize the specific decisions already made by black-box FMs. However, these explainable methods have certain limitations in terms of faithfulness, detail capture and resource requirement. Consequently, in response to these issues, a new class of interpretable methods should be considered to unveil the underlying mechanisms in an accurate, comprehensive, heuristic and resource-light way. This survey aims to review interpretable methods that comply with the aforementioned principles and have been successfully applied to FMs. These methods are deeply rooted in machine learning theory, covering the analysis of generalization performance, expressive capability, and dynamic behavior. They provide a thorough interpretation of the entire workflow of FMs, ranging from the inference capability and training dynamics to their ethical implications. Ultimately, drawing upon these interpretations, this review identifies the next frontier research directions for FMs.
Abstract:This paper tackles the emerging challenge of training generative models within a self-consuming loop, wherein successive generations of models are recursively trained on mixtures of real and synthetic data from previous generations. We construct a theoretical framework to rigorously evaluate how this training regimen impacts the data distributions learned by future models. Specifically, we derive bounds on the total variation (TV) distance between the synthetic data distributions produced by future models and the original real data distribution under various mixed training scenarios. Our analysis demonstrates that this distance can be effectively controlled under the condition that mixed training dataset sizes or proportions of real data are large enough. Interestingly, we further unveil a phase transition induced by expanding synthetic data amounts, proving theoretically that while the TV distance exhibits an initial ascent, it declines beyond a threshold point. Finally, we specialize our general results to diffusion models, delivering nuanced insights such as the efficacy of optimal early stopping within the self-consuming loop.
Abstract:We provide a new non-invasive, easy-to-scale for large amounts of subjects and a remotely accessible method for (hidden) emotion detection from videos of human faces. Our approach combines face manifold detection for accurate location of the face in the video with local face manifold embedding to create a common domain for the measurements of muscle micro-movements that is invariant to the movement of the subject in the video. In the next step, we employ the Digital Image Speckle Correlation (DISC) and the optical flow algorithm to compute the pattern of micro-movements in the face. The corresponding vector field is mapped back to the original space and superimposed on the original frames of the videos. Hence, the resulting videos include additional information about the direction of the movement of the muscles in the face. We take the publicly available CK++ dataset of visible emotions and add to it videos of the same format but with hidden emotions. We process all the videos using our micro-movement detection and use the results to train a state-of-the-art network for emotions classification from videos -- Frame Attention Network (FAN). Although the original FAN model achieves very high out-of-sample performance on the original CK++ videos, it does not perform so well on hidden emotions videos. The performance improves significantly when the model is trained and tested on videos with the vector fields of muscle movements. Intuitively, the corresponding arrows serve as edges in the image that are easily captured by the convolutions filters in the FAN network.