Fellow, IEEE
Abstract:In this paper, to fully exploit the performance gains from moveable antennas (MAs) and reconfigurable intelligent surface (RIS), a RIS-aided directional modulation \textcolor{blue}{(DM)} network with movable antenna at base station (BS) is established Based on the principle of DM, a BS equipped with MAs transmits legitimate information to a single-antenna user (Bob) while exploiting artificial noise (AN) to degrade signal reception at the eavesdropper (Eve). The combination of AN and transmission beamforming vectors is modeled as joint beamforming vector (JBV) to achieve optimal power allocation. The objective is to maximize the achievable secrecy rate (SR) by optimizing MAs antenna position, phase shift matrix (PSM) of RIS, and JBV. The limited movable range (MR) and discrete candidate positions of the MAs at the BS are considered, which renders the optimization problem non-convex. To address these challenges, an optimization method under perfect channel state information (CSI) is firstly designed, in which the MAs antenna positions are obtained using compressive sensing (CS) technology, and JBV and PSM are iteratively optimized. Then, the design method and SR performance under imperfect CSI is investigated. The proposed algorithms have fewer iterations and lower complexity. Simulation results demonstrate that MAs outperform fixed-position antennas in SR performance when there is an adequately large MR available.
Abstract:This paper investigates joint device activity detection and channel estimation for grant-free random access in Low-earth orbit (LEO) satellite communications. We consider uplink communications from multiple single-antenna terrestrial users to a LEO satellite equipped with a uniform planar array of multiple antennas, where orthogonal frequency division multiplexing (OFDM) modulation is adopted. To combat the severe Doppler shift, a transmission scheme is proposed, where the discrete prolate spheroidal basis expansion model (DPS-BEM) is introduced to reduce the number of unknown channel parameters. Then the vector approximate message passing (VAMP) algorithm is employed to approximate the minimum mean square error estimation of the channel, and the Markov random field is combined to capture the channel sparsity. Meanwhile, the expectation-maximization (EM) approach is integrated to learn the hyperparameters in priors. Finally, active devices are detected by calculating energy of the estimated channel. Simulation results demonstrate that the proposed method outperforms conventional algorithms in terms of activity error rate and channel estimation precision.
Abstract:Existing wireless video transmission schemes directly conduct video coding in pixel level, while neglecting the inner semantics contained in videos. In this paper, we propose a wireless video semantic communication framework, abbreviated as WVSC, which integrates the idea of semantic communication into wireless video transmission scenarios. WVSC first encodes original video frames as semantic frames and then conducts video coding based on such compact representations, enabling the video coding in semantic level rather than pixel level. Moreover, to further reduce the communication overhead, a reference semantic frame is introduced to substitute motion vectors of each frame in common video coding methods. At the receiver, multi-frame compensation (MFC) is proposed to produce compensated current semantic frame with a multi-frame fusion attention module. With both the reference frame transmission and MFC, the bandwidth efficiency improves with satisfying video transmission performance. Experimental results verify the performance gain of WVSC over other DL-based methods e.g. DVSC about 1 dB and traditional schemes about 2 dB in terms of PSNR.
Abstract:A latent denoising semantic communication (SemCom) framework is proposed for robust image transmission over noisy channels. By incorporating a learnable latent denoiser into the receiver, the received signals are preprocessed to effectively remove the channel noise and recover the semantic information, thereby enhancing the quality of the decoded images. Specifically, a latent denoising mapping is established by an iterative residual learning approach to improve the denoising efficiency while ensuring stable performance. Moreover, channel signal-to-noise ratio (SNR) is utilized to estimate and predict the latent similarity score (SS) for conditional denoising, where the number of denoising steps is adapted based on the predicted SS sequence, further reducing the communication latency. Finally, simulations demonstrate that the proposed framework can effectively and efficiently remove the channel noise at various levels and reconstruct visual-appealing images.
Abstract:This paper investigates an innovative movable antenna (MA)-enhanced multiple-input multiple-output (MIMO) system designed to enhance communication performance. We aim to maximize the energy efficiency (EE) under statistical channel state information (S-CSI) through a joint optimization of the transmit covariance matrix and the antenna position vectors (APVs). To solve the stochastic problem, we consider the large number of antennas scenario and resort to deterministic equivalent (DE) technology to reformulate the system EE w.r.t. the transmit variables, i.e., the transmit covariance matrix and APV, and the receive variables, i.e., the receive APV, respectively. Then, we propose an alternative optimization (AO) algorithm to update the transmit variables and the receive variables to maximize the system EE, respectively. Our numerical results reveal that, the proposed MA-enhanced system can significantly improve EE compared to several benchmark schemes and the optimal performance can be achieved with a finite size of movement regions for MAs.
Abstract:This paper investigates joint device identification, channel estimation, and symbol detection for LEO satellite-enabled grant-free random access systems, specifically targeting scenarios where remote Internet-of-Things (IoT) devices operate without global navigation satellite system (GNSS) assistance. Considering the constrained power consumption of these devices, the large differential delay and Doppler shift are handled at the satellite receiver. We firstly propose a spreading-based multi-frame transmission scheme with orthogonal time-frequency space (OTFS) modulation to mitigate the doubly dispersive effect in time and frequency, and then analyze the input-output relationship of the system. Next, we propose a receiver structure based on three modules: a linear module for identifying active devices that leverages the generalized approximate message passing algorithm to eliminate inter-user and inter-carrier interference; a non-linear module that employs the message passing algorithm to jointly estimate the channel and detect the transmitted symbols; and a third module that aims to exploit the three dimensional block channel sparsity in the delay-Doppler-angle domain. Soft information is exchanged among the three modules by careful message scheduling. Furthermore, the expectation-maximization algorithm is integrated to adjust phase rotation caused by the fractional Doppler and to learn the hyperparameters in the priors. Finally, the convolutional neural network is incorporated to enhance the symbol detection. Simulation results demonstrate that the proposed transmission scheme boosts the system performance, and the designed algorithms outperform the conventional methods significantly in terms of the device identification, channel estimation, and symbol detection.
Abstract:Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Abstract:This paper investigates joint device identification, channel estimation, and symbol detection for cooperative multi-satellite-enhanced random access, where orthogonal time-frequency space modulation with the large antenna array is utilized to combat the dynamics of the terrestrial-satellite links (TSLs). We introduce the generalized complex exponential basis expansion model to parameterize TSLs, thereby reducing the pilot overhead. By exploiting the block sparsity of the TSLs in the angular domain, a message passing algorithm is designed for initial channel estimation. Subsequently, we examine two cooperative modes to leverage the spatial diversity within satellite constellations: the centralized mode, where computations are performed at a high-power central server, and the distributed mode, where computations are offloaded to edge satellites with minimal signaling overhead. Specifically, in the centralized mode, device identification is achieved by aggregating backhaul information from edge satellites, and channel estimation and symbol detection are jointly enhanced through a structured approximate expectation propagation (AEP) algorithm. In the distributed mode, edge satellites share channel information and exchange soft information about data symbols, leading to a distributed version of AEP. The introduced basis expansion model for TSLs enables the efficient implementation of both centralized and distributed algorithms via fast Fourier transform. Simulation results demonstrate that proposed schemes significantly outperform conventional algorithms in terms of the activity error rate, the normalized mean squared error, and the symbol error rate. Notably, the distributed mode achieves performance comparable to the centralized mode with only two exchanges of soft information about data symbols within the constellation.
Abstract:A fully-digital massive MIMO receive array is promising to meet the high-resolution requirement of near-field (NF) emitter localization, but it also results in the significantly increasing of hardware costs and algorithm complexity. In order to meet the future demand for green communication while maintaining high performance, the grouped hybrid analog and digital (HAD) structure is proposed for NF DOA estimation, which divides the large-scale receive array into small-scale groups and each group contains several subarrays. Thus the NF direction-of-arrival (DOA) estimation problem is viewed as far-field (FF) within each group, and some existing methods such as MUSIC, Root-MUSIC, ESPRIT, etc., can be adopted. Then by angle calibration, a candidate position set is generated. To eliminate the phase ambiguity arising from the HAD structure and obtain the emitter position, two low-complexity clustering-based methods, minimum sample distance clustering (MSDC) and range scatter diagram (RSD) - angle scatter diagram (ASD)-based DBSCAN (RSD-ASD-DBSCAN), are proposed based on the distribution features of samples in the candidate position set. Then to further improve the localization accuracy, a model-driven regression network (RegNet) is designed, which consists of a multi-layer neural network (MLNN) for false solution elimination and a perceptron for angle fusion. Finally, the Cramer-Rao lower bound (CRLB) of NF emitter localization for the proposed grouped HAD structure is also derived. The simulation results show that the proposed methods can achieve CRLB at different SNR regions, the RegNet has great performance advantages at low SNR regions and the clustering-based methods have much lower complexity.
Abstract:Though achieving marvelous progress in various scenarios, existing semantic communication frameworks mainly consider single-input single-output Gaussian channels or Rayleigh fading channels, neglecting the widely-used multiple-input multiple-output (MIMO) channels, which hinders the application into practical systems. One common solution to combat MIMO fading is to utilize feedback MIMO channel state information (CSI). In this paper, we incorporate MIMO CSI into system designs from a new perspective and propose the learnable CSI fusion semantic communication (LCFSC) framework, where CSI is treated as side information by the semantic extractor to enhance the semantic coding. To avoid feature fusion due to abrupt combination of CSI with features, we present a non-invasive CSI fusion multi-head attention module inside the Swin Transformer. With the learned attention masking map determined by both source and channel states, more robust attention distribution could be generated. Furthermore, the percentage of mask elements could be flexibly adjusted by the learnable mask ratio, which is produced based on the conditional variational interference in an unsupervised manner. In this way, CSI-aware semantic coding is achieved through learnable CSI fusion masking. Experiment results testify the superiority of LCFSC over traditional schemes and state-of-the-art Swin Transformer-based semantic communication frameworks in MIMO fading channels.