Fellow, IEEE
Abstract:This paper investigates joint device identification, channel estimation, and symbol detection for LEO satellite-enabled grant-free random access systems, specifically targeting scenarios where remote Internet-of-Things (IoT) devices operate without global navigation satellite system (GNSS) assistance. Considering the constrained power consumption of these devices, the large differential delay and Doppler shift are handled at the satellite receiver. We firstly propose a spreading-based multi-frame transmission scheme with orthogonal time-frequency space (OTFS) modulation to mitigate the doubly dispersive effect in time and frequency, and then analyze the input-output relationship of the system. Next, we propose a receiver structure based on three modules: a linear module for identifying active devices that leverages the generalized approximate message passing algorithm to eliminate inter-user and inter-carrier interference; a non-linear module that employs the message passing algorithm to jointly estimate the channel and detect the transmitted symbols; and a third module that aims to exploit the three dimensional block channel sparsity in the delay-Doppler-angle domain. Soft information is exchanged among the three modules by careful message scheduling. Furthermore, the expectation-maximization algorithm is integrated to adjust phase rotation caused by the fractional Doppler and to learn the hyperparameters in the priors. Finally, the convolutional neural network is incorporated to enhance the symbol detection. Simulation results demonstrate that the proposed transmission scheme boosts the system performance, and the designed algorithms outperform the conventional methods significantly in terms of the device identification, channel estimation, and symbol detection.
Abstract:Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Abstract:This paper investigates joint device identification, channel estimation, and symbol detection for cooperative multi-satellite-enhanced random access, where orthogonal time-frequency space modulation with the large antenna array is utilized to combat the dynamics of the terrestrial-satellite links (TSLs). We introduce the generalized complex exponential basis expansion model to parameterize TSLs, thereby reducing the pilot overhead. By exploiting the block sparsity of the TSLs in the angular domain, a message passing algorithm is designed for initial channel estimation. Subsequently, we examine two cooperative modes to leverage the spatial diversity within satellite constellations: the centralized mode, where computations are performed at a high-power central server, and the distributed mode, where computations are offloaded to edge satellites with minimal signaling overhead. Specifically, in the centralized mode, device identification is achieved by aggregating backhaul information from edge satellites, and channel estimation and symbol detection are jointly enhanced through a structured approximate expectation propagation (AEP) algorithm. In the distributed mode, edge satellites share channel information and exchange soft information about data symbols, leading to a distributed version of AEP. The introduced basis expansion model for TSLs enables the efficient implementation of both centralized and distributed algorithms via fast Fourier transform. Simulation results demonstrate that proposed schemes significantly outperform conventional algorithms in terms of the activity error rate, the normalized mean squared error, and the symbol error rate. Notably, the distributed mode achieves performance comparable to the centralized mode with only two exchanges of soft information about data symbols within the constellation.
Abstract:A fully-digital massive MIMO receive array is promising to meet the high-resolution requirement of near-field (NF) emitter localization, but it also results in the significantly increasing of hardware costs and algorithm complexity. In order to meet the future demand for green communication while maintaining high performance, the grouped hybrid analog and digital (HAD) structure is proposed for NF DOA estimation, which divides the large-scale receive array into small-scale groups and each group contains several subarrays. Thus the NF direction-of-arrival (DOA) estimation problem is viewed as far-field (FF) within each group, and some existing methods such as MUSIC, Root-MUSIC, ESPRIT, etc., can be adopted. Then by angle calibration, a candidate position set is generated. To eliminate the phase ambiguity arising from the HAD structure and obtain the emitter position, two low-complexity clustering-based methods, minimum sample distance clustering (MSDC) and range scatter diagram (RSD) - angle scatter diagram (ASD)-based DBSCAN (RSD-ASD-DBSCAN), are proposed based on the distribution features of samples in the candidate position set. Then to further improve the localization accuracy, a model-driven regression network (RegNet) is designed, which consists of a multi-layer neural network (MLNN) for false solution elimination and a perceptron for angle fusion. Finally, the Cramer-Rao lower bound (CRLB) of NF emitter localization for the proposed grouped HAD structure is also derived. The simulation results show that the proposed methods can achieve CRLB at different SNR regions, the RegNet has great performance advantages at low SNR regions and the clustering-based methods have much lower complexity.
Abstract:Though achieving marvelous progress in various scenarios, existing semantic communication frameworks mainly consider single-input single-output Gaussian channels or Rayleigh fading channels, neglecting the widely-used multiple-input multiple-output (MIMO) channels, which hinders the application into practical systems. One common solution to combat MIMO fading is to utilize feedback MIMO channel state information (CSI). In this paper, we incorporate MIMO CSI into system designs from a new perspective and propose the learnable CSI fusion semantic communication (LCFSC) framework, where CSI is treated as side information by the semantic extractor to enhance the semantic coding. To avoid feature fusion due to abrupt combination of CSI with features, we present a non-invasive CSI fusion multi-head attention module inside the Swin Transformer. With the learned attention masking map determined by both source and channel states, more robust attention distribution could be generated. Furthermore, the percentage of mask elements could be flexibly adjusted by the learnable mask ratio, which is produced based on the conditional variational interference in an unsupervised manner. In this way, CSI-aware semantic coding is achieved through learnable CSI fusion masking. Experiment results testify the superiority of LCFSC over traditional schemes and state-of-the-art Swin Transformer-based semantic communication frameworks in MIMO fading channels.
Abstract:This paper investigates asynchronous MIMO massive unsourced random access in an orthogonal frequency division multiplexing (OFDM) system over frequency-selective fading channels, with the presence of both timing and carrier frequency offsets (TO and CFO) and non-negligible codeword collisions. The proposed coding framework segregates the data into two components, namely, preamble and coding parts, with the former being tree-coded and the latter LDPC-coded. By leveraging the dual sparsity of the equivalent channel across both codeword and delay domains (CD and DD), we develop a message passing-based sparse Bayesian learning algorithm, combined with belief propagation and mean field, to iteratively estimate DD channel responses, TO, and delay profiles. Furthermore, we establish a novel graph-based algorithm to iteratively separate the superimposed channels and compensate for the phase rotations. Additionally, the proposed algorithm is applied to the flat fading scenario to estimate both TO and CFO, where the channel and offset estimation is enhanced by leveraging the geometric characteristics of the signal constellation. Simulations reveal that the proposed algorithm achieves superior performance and substantial complexity reduction in both channel and offset estimation compared to the codebook enlarging-based counterparts, and enhanced data recovery performances compared to state-of-the-art URA schemes.
Abstract:This letter investigates the weighted sum rate maximization problem in movable antenna (MA)-enhanced systems. To reduce the computational complexity, we transform it into a more tractable weighted minimum mean square error (WMMSE) problem well-suited for MA. We then adopt the WMMSE algorithm and majorization-minimization algorithm to optimize the beamforming and antenna positions, respectively. Moreover, we propose a planar movement mode, which constrains each MA to a specified area, we obtain a low-complexity closed-form solution. Numerical results demonstrate that the MA-enhanced system outperforms the conventional system. Besides, the computation time for the planar movement mode is reduced by approximately 30\% at a little performance expense.
Abstract:This paper investigates the unsourced random access (URA) problem with a massive multiple-input multiple-output receiver that serves wireless devices in the near-field of radiation. We employ an uncoupled transmission protocol without appending redundancies to the slot-wise encoded messages. To exploit the channel sparsity for block length reduction while facing the collapsed sparse structure in the angular domain of near-field channels, we propose a sparse channel sampling method that divides the angle-distance (polar) domain based on the maximum permissible coherence. Decoding starts with retrieving active codewords and channels from each slot. We address the issue by leveraging the structured channel sparsity in the spatial and polar domains and propose a novel turbo-based recovery algorithm. Furthermore, we investigate an off-grid compressed sensing method to refine discretely estimated channel parameters over the continuum that improves the detection performance. Afterward, without the assistance of redundancies, we recouple the separated messages according to the similarity of the users' channel information and propose a modified K-medoids method to handle the constraints and collisions involved in channel clustering. Simulations reveal that via exploiting the channel sparsity, the proposed URA scheme achieves high spectral efficiency and surpasses existing multi-slot-based schemes. Moreover, with more measurements provided by the overcomplete channel sampling, the near-field-suited scheme outperforms its counterpart of the far-field.
Abstract:This paper studies a novel movable antenna (MA)-enhanced multiple-input multiple-output (MIMO) system to leverage the corresponding spatial degrees of freedom (DoFs) for improving the performance of wireless communications. We aim to maximize the achievable rate by jointly optimizing the MA positions and the transmit covariance matrix based on statistical channel state information (CSI). To solve the resulting design problem, we develop a constrained stochastic successive convex approximation (CSSCA) algorithm applicable for the general movement mode. Furthermore, we propose two simplified antenna movement modes, namely the linear movement mode and the planar movement mode, to facilitate efficient antenna movement and reduce the computational complexity of the CSSCA algorithm. Numerical results show that the considered MA-enhanced system can significantly improve the achievable rate compared to conventional MIMO systems employing uniform planar arrays (UPAs) and that the proposed planar movement mode performs closely to the performance upper bound achieved by the general movement mode.
Abstract:Multi-node communication, which refers to the interaction among multiple devices, has attracted lots of attention in many Internet-of-Things (IoT) scenarios. However, its huge amounts of data flows and inflexibility for task extension have triggered the urgent requirement of communication-efficient distributed data transmission frameworks. In this paper, inspired by the great superiorities on bandwidth reduction and task adaptation of semantic communications, we propose a federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices. Federated learning enables the design of independent semantic communication link of each user while further improves the semantic extraction and task performance through global aggregation. Each link in FLSC is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator for coarse-to-fine semantic extraction and meaning translation according to specific tasks. In order to extend the FLSC into more realistic conditions, we design a channel state information-based multiple-input multiple-output transmission module to combat channel fading and noise. Simulation results show that the coarse semantic information can deal with a range of image-level tasks. Moreover, especially in low signal-to-noise ratio and channel bandwidth ratio regimes, FLSC evidently outperforms the traditional scheme, e.g. about 10 peak signal-to-noise ratio gain in the 3 dB channel condition.