Abstract:Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Abstract:The passive reconfigurable intelligent surface (RIS) requires numerous elements to achieve adequate array gain, which linearly increases power consumption (PC) with the number of reflection phases. To address this, this letter introduces a rotatable block-controlled RIS (BC-RIS) that preserves spectral efficiency (SE) while reducing power costs. Unlike the element-controlled RIS (EC-RIS), which necessitates independent phase control for each element, the BC-RIS uses a single phase control circuit for each block, substantially lowering power requirements. In the maximum ratio transmission, by customizing specular reflection channels through the rotation of blocks and coherently superimposing signals with optimized reflection phase of blocks, the BC-RIS achieves the same averaged SE as the EC-RIS. To counteract the added power demands from rotation, influenced by block size, we have developed a segmentation scheme to minimize overall PC. Furthermore, constraints for rotation power-related parameters have been established to enhance the energy efficiency of the BC-RIS compared to the EC-RIS. Numerical results confirm that this approach significantly improves energy efficiency while maintaining performance.
Abstract:Radio imaging is rapidly gaining prominence in the design of future communication systems, with the potential to utilize reconfigurable intelligent surfaces (RISs) as imaging apertures. Although the sparsity of targets in three-dimensional (3D) space has led most research to adopt compressed sensing (CS)-based imaging algorithms, these often require substantial computational and memory burdens. Drawing inspiration from conventional Fourier transform (FT)-based imaging methods, our research seeks to accelerate radio imaging in RIS-aided communication systems. To begin, we introduce a two-stage wavenumber domain 3D imaging technique: first, we modify RIS phase shifts to recover the equivalent channel response from the user equipment to the RIS array, subsequently employing traditional FT-based wavenumber domain methods to produce target images. We also determine the diffraction resolution limits of the system through k-space analysis, taking into account factors including system bandwidth, transmission direction, operating frequency, and the angle subtended by the RIS. Addressing the challenge of limited pilots in communication systems, we unveil an innovative algorithm that merges the strengths of both FT- and CS-based techniques by substituting the expansive sensing matrix with FT-based operators. Our simulation outcomes confirm that our proposed FT-based methods achieve high-quality images while demanding few time, memory, and communication resources.
Abstract:The physical layer authentication (PLA) is a promising technology which can enhance the access security of a massive number of devices in the near future. In this paper, we propose a reconfigurable intelligent surface (RIS)-assisted PLA system, in which the legitimate transmitter can customize the channel fingerprints during PLA by controlling the ON-OFF state of the RIS. Without loss of generality, we use the received signal strength (RSS) based spoofing detection approach to analyze the feasibility of the proposed architecture. Specifically, based on the RSS, we derive the statistical properties of PLA and give some interesting insights, which showcase that the RIS-assisted PLA is theoretically feasible. Then, we derive the optimal detection threshold to maximize the performance in the context of the presented performance metrics. Next, the actual feasibility of the proposed system is verified via proof-of-concept experiments on a RIS-assisted PLA prototype platform. The experiment results show that there are 3.5% and 76% performance improvements when the transmission sources are at different locations and at the same location, respectively.
Abstract:Reconfigurable intelligent surface (RIS) is a promising technology that can reshape the electromagnetic environment in wireless networks, offering various possibilities for enhancing wireless channels. Motivated by this, we investigate the channel optimization for multiple-input multiple-output (MIMO) systems assisted by RIS. In this paper, an efficient RIS optimization method is proposed to enhance the effective rank of the MIMO channel for achievable rate improvement. Numerical results are presented to verify the effectiveness of RIS in improving MIMO channels. Additionally, we construct a 2$\times$2 RIS-assisted MIMO prototype to perform experimental measurements and validate the performance of our proposed algorithm. The results reveal a significant increase in effective rank and achievable rate for the RIS-assisted MIMO channel compared to the MIMO channel without RIS.
Abstract:This study explores the use of non-line-of-sight (NLOS) components in millimeter-wave (mmWave) communication systems for joint localization and environment sensing. The radar cross section (RCS) of a reconfigurable intelligent surface (RIS) is calculated to develop a general path gain model for RISs and traditional scatterers. The results show that RISs have a greater potential to assist in localization due to their ability to maintain high RCSs and create strong NLOS links. A one-stage linear weighted least squares estimator is proposed to simultaneously determine user equipment (UE) locations, velocities, and scatterer (or RIS) locations using line-of-sight (LOS) and NLOS paths. The estimator supports environment sensing and UE localization even using only NLOS paths. A second-stage estimator is also introduced to improve environment sensing accuracy by considering the nonlinear relationship between UE and scatterer locations. Simulation results demonstrate the effectiveness of the proposed estimators in rich scattering environments and the benefits of using NLOS paths for improving UE location accuracy and assisting in environment sensing. The effects of RIS number, size, and deployment on localization performance are also analyzed.
Abstract:Reconfigurable intelligent surface (RIS) has aroused a surge of interest in recent years. In this paper, we investigate the joint phase alignment and phase quantization on discrete phase shift designs for RIS-assisted single-input single-output (SISO) system. Firstly, the phenomena of phase distribution in far field and near field are respectively unveiled, paving the way for discretization of phase shift for RIS. Then, aiming at aligning phases, the phase distribution law and its underlying degree-of-freedom (DoF) are characterized, serving as the guideline of phase quantization strategies. Subsequently, two phase quantization methods, dynamic threshold phase quantization (DTPQ) and equal interval phase quantization (EIPQ), are proposed to strengthen the beamforming effect of RIS. DTPQ is capable of calculating the optimal discrete phase shifts with linear complexity in the number of unit cells on RIS, whilst EIPQ is a simplified method with a constant complexity yielding sub-optimal solution. Simulation results demonstrate that both methods achieve substantial improvements on power gain, stability, and robustness over traditional quantization methods. The path loss (PL) scaling law under discrete phase shift of RIS is unveiled for the first time, with the phase shifts designed by DTPQ due to its optimality. Additionally, the field trials conducted at 2.6 GHz and 35 GHz validate the favourable performance of the proposed methods in practical communication environment.
Abstract:Reconfigurable intelligent surfaces (RISs) are anticipated to transform wireless communication in a way that is both economical and energy efficient. Revealing the practical power consumption characteristics of RISs can provide an essential toolkit for the optimal design of RIS-assisted wireless communication systems and energy efficiency performance evaluation. Based on our previous work that modeled the dynamic power consumption of RISs, we henceforth concentrate more on static power consumption. We first divide the RIS hardware into three basic parts: the FPGA control board, the drive circuits, and the RIS unit cells. The first two parts are mainly to be investigated and the last part has been modeled as the dynamic power consumption in the previous work. In this work, the power consumption of the FPGA control board is regarded as a constant value, however, that of the drive circuit is a variant that is affected by the number of control signals and its self-power consumption characteristics. Therefore, we model the power consumption of the drive circuits of various kinds of RISs, i.e., PIN diode-/Varactor diode-/RF switch-based RIS. Finally, the measurement results and typical value of static power consumption are illustrated and discussed.
Abstract:Due to the ability to reshape the wireless communication environment in a cost- and energy-efficient manner, the reconfigurable intelligent surface (RIS) has garnered substantial attention. However, the explicit power consumption model of RIS and measurement validation, have received far too little attention. Therefore, in this work, we propose the RIS power consumption model and implement the practical measurement validation with various RISs. Measurement results illustrate the generality and accuracy of the proposed model. Firstly, we verify that RIS has static power consumption, and present the experiment results. Secondly, we confirm that the dynamic power consumption of the varactor-diode based RIS is almost negligible. Finally but significantly, we model the quantitative relationship between the dynamic power consumption of the PIN-diode based RIS and the polarization mode, controllable bit resolution, working status of RIS, which is validated by practical experimental results.
Abstract:A reconfigurable intelligent surface (RIS) is capable of manipulating electromagnetic waves with its flexibly configurable unit cells, thus is an appealing technology to resist fast fading caused by multi-path in wireless communications. In this paper, a two-path propagation model for RIS-assisted wireless communications is proposed by considering both the direct path from the transmitter to the receiver and the assisted path provided by the RIS. The proposed propagation model unveils that the phase shifts of RISs can be optimized by appropriate configuration for multi-path fading mitigation. In particular, four types of RISs with different configuration capabilities are introduced and their performances on improving received signal power in virtue of the assisted path to resist fast fading are compared through extensive simulation results. In addition, an RIS operating at 35 GHz is used for experimental measurement. The experimental results verify that an RIS has the ability to combat fast fading and thus improves the receiving performance, which may lay a foundation for further researches.