Abstract:The physical layer authentication (PLA) is a promising technology which can enhance the access security of a massive number of devices in the near future. In this paper, we propose a reconfigurable intelligent surface (RIS)-assisted PLA system, in which the legitimate transmitter can customize the channel fingerprints during PLA by controlling the ON-OFF state of the RIS. Without loss of generality, we use the received signal strength (RSS) based spoofing detection approach to analyze the feasibility of the proposed architecture. Specifically, based on the RSS, we derive the statistical properties of PLA and give some interesting insights, which showcase that the RIS-assisted PLA is theoretically feasible. Then, we derive the optimal detection threshold to maximize the performance in the context of the presented performance metrics. Next, the actual feasibility of the proposed system is verified via proof-of-concept experiments on a RIS-assisted PLA prototype platform. The experiment results show that there are 3.5% and 76% performance improvements when the transmission sources are at different locations and at the same location, respectively.
Abstract:Wireless networks are vulnerable to physical layer spoofing attacks due to the wireless broadcast nature, thus, integrating communications and security (ICAS) is urgently needed for 6G endogenous security. In this letter, we propose an environment semantics enabled physical layer authentication network based on deep learning, namely EsaNet, to authenticate the spoofing from the underlying wireless protocol. Specifically, the frequency independent wireless channel fingerprint (FiFP) is extracted from the channel state information (CSI) of a massive multi-input multi-output (MIMO) system based on environment semantics knowledge. Then, we transform the received signal into a two-dimensional red green blue (RGB) image and apply the you only look once (YOLO), a single-stage object detection network, to quickly capture the FiFP. Next, a lightweight classification network is designed to distinguish the legitimate from the illegitimate users. Finally, the experimental results show that the proposed EsaNet can effectively detect physical layer spoofing attacks and is robust in time-varying wireless environments.