Abstract:Accurate modeling of system dynamics holds intriguing potential in broad scientific fields including cytodynamics and fluid mechanics. This task often presents significant challenges when (i) observations are limited to cross-sectional samples (where individual trajectories are inaccessible for learning), and moreover, (ii) the behaviors of individual particles are heterogeneous (especially in biological systems due to biodiversity). To address them, we introduce a novel framework dubbed correlational Lagrangian Schr\"odinger bridge (CLSB), aiming to seek for the evolution "bridging" among cross-sectional observations, while regularized for the minimal population "cost". In contrast to prior methods relying on \textit{individual}-level regularizers for all particles \textit{homogeneously} (e.g. restraining individual motions), CLSB operates at the population level admitting the heterogeneity nature, resulting in a more generalizable modeling in practice. To this end, our contributions include (1) a new class of population regularizers capturing the temporal variations in multivariate relations, with the tractable formulation derived, (2) three domain-informed instantiations based on genetic co-expression stability, and (3) an integration of population regularizers into data-driven generative models as constrained optimization, and a numerical solution, with further extension to conditional generative models. Empirically, we demonstrate the superiority of CLSB in single-cell sequencing data analyses such as simulating cell development over time and predicting cellular responses to drugs of varied doses.
Abstract:Roadside perception can greatly increase the safety of autonomous vehicles by extending their perception ability beyond the visual range and addressing blind spots. However, current state-of-the-art vision-based roadside detection methods possess high accuracy on labeled scenes but have inferior performance on new scenes. This is because roadside cameras remain stationary after installation and can only collect data from a single scene, resulting in the algorithm overfitting these roadside backgrounds and camera poses. To address this issue, in this paper, we propose an innovative Scenario Generalization Framework for Vision-based Roadside 3D Object Detection, dubbed SGV3D. Specifically, we employ a Background-suppressed Module (BSM) to mitigate background overfitting in vision-centric pipelines by attenuating background features during the 2D to bird's-eye-view projection. Furthermore, by introducing the Semi-supervised Data Generation Pipeline (SSDG) using unlabeled images from new scenes, diverse instance foregrounds with varying camera poses are generated, addressing the risk of overfitting specific camera poses. We evaluate our method on two large-scale roadside benchmarks. Our method surpasses all previous methods by a significant margin in new scenes, including +42.57% for vehicle, +5.87% for pedestrian, and +14.89% for cyclist compared to BEVHeight on the DAIR-V2X-I heterologous benchmark. On the larger-scale Rope3D heterologous benchmark, we achieve notable gains of 14.48% for car and 12.41% for large vehicle. We aspire to contribute insights on the exploration of roadside perception techniques, emphasizing their capability for scenario generalization. The code will be available at {\url{ https://github.com/yanglei18/SGV3D}}
Abstract:This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of ``offline" data examples. While recent years have seen a flurry of work on applying various machine learning techniques to the offline optimization problem, the majority of these work focused on learning a surrogate of the unknown objective function and then applying existing optimization algorithms. While the idea of modeling the unknown objective function is intuitive and appealing, from the learning point of view it also makes it very difficult to tune the objective of the learner according to the objective of optimization. Instead of learning and then optimizing the unknown objective function, in this paper we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model. To learn an effective generative model from the offline data examples, we consider the standard technique of ``re-weighting", and our main technical contribution is a probably approximately correct (PAC) lower bound on the natural optimization objective, which allows us to jointly learn a weight function and a score-based generative model. The robustly competitive performance of the proposed approach is demonstrated via empirical studies using the standard offline optimization benchmarks.
Abstract:Optic disc and cup segmentation play a crucial role in automating the screening and diagnosis of optic glaucoma. While data-driven convolutional neural networks (CNNs) show promise in this area, the inherent ambiguity of segmenting object and background boundaries in the task of optic disc and cup segmentation leads to noisy annotations that impact model performance. To address this, we propose an innovative label-denoising method of Multiple Pseudo-labels Noise-aware Network (MPNN) for accurate optic disc and cup segmentation. Specifically, the Multiple Pseudo-labels Generation and Guided Denoising (MPGGD) module generates pseudo-labels by multiple different initialization networks trained on true labels, and the pixel-level consensus information extracted from these pseudo-labels guides to differentiate clean pixels from noisy pixels. The training framework of the MPNN is constructed by a teacher-student architecture to learn segmentation from clean pixels and noisy pixels. Particularly, such a framework adeptly leverages (i) reliable and fundamental insights from clean pixels and (ii) the supplementary knowledge within noisy pixels via multiple perturbation-based unsupervised consistency. Compared to other label-denoising methods, comprehensive experimental results on the RIGA dataset demonstrate our method's excellent performance and significant denoising ability.
Abstract:Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods.
Abstract:Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75\% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4\%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries.
Abstract:Local Feature Matching, an essential component of several computer vision tasks (e.g., structure from motion and visual localization), has been effectively settled by Transformer-based methods. However, these methods only integrate long-range context information among keypoints with a fixed receptive field, which constrains the network from reconciling the importance of features with different receptive fields to realize complete image perception, hence limiting the matching accuracy. In addition, these methods utilize a conventional handcrafted encoding approach to integrate the positional information of keypoints into the visual descriptors, which limits the capability of the network to extract reliable positional encoding message. In this study, we propose Feature Matching with Reconciliatory Transformer (FMRT), a novel Transformer-based detector-free method that reconciles different features with multiple receptive fields adaptively and utilizes parallel networks to realize reliable positional encoding. Specifically, FMRT proposes a dedicated Reconciliatory Transformer (RecFormer) that consists of a Global Perception Attention Layer (GPAL) to extract visual descriptors with different receptive fields and integrate global context information under various scales, Perception Weight Layer (PWL) to measure the importance of various receptive fields adaptively, and Local Perception Feed-forward Network (LPFFN) to extract deep aggregated multi-scale local feature representation. Extensive experiments demonstrate that FMRT yields extraordinary performance on multiple benchmarks, including pose estimation, visual localization, homography estimation, and image matching.
Abstract:Fine-Grained Image Recognition (FGIR) is a fundamental and challenging task in computer vision and multimedia that plays a crucial role in Intellectual Economy and Industrial Internet applications. However, the absence of a unified open-source software library covering various paradigms in FGIR poses a significant challenge for researchers and practitioners in the field. To address this gap, we present Hawkeye, a PyTorch-based library for FGIR with deep learning. Hawkeye is designed with a modular architecture, emphasizing high-quality code and human-readable configuration, providing a comprehensive solution for FGIR tasks. In Hawkeye, we have implemented 16 state-of-the-art fine-grained methods, covering 6 different paradigms, enabling users to explore various approaches for FGIR. To the best of our knowledge, Hawkeye represents the first open-source PyTorch-based library dedicated to FGIR. It is publicly available at https://github.com/Hawkeye-FineGrained/Hawkeye/, providing researchers and practitioners with a powerful tool to advance their research and development in the field of FGIR.
Abstract:The growing demand for accurate control in varying and unknown environments has sparked a corresponding increase in the requirements for power supply components, including permanent magnet synchronous motors (PMSMs). To infer the unknown part of the system, machine learning techniques are widely employed, especially Gaussian process regression (GPR) due to its flexibility of continuous system modeling and its guaranteed performance. For practical implementation, distributed GPR is adopted to alleviate the high computational complexity. However, the study of distributed GPR from a control perspective remains an open problem. In this paper, a control-aware optimal aggregation strategy of distributed GPR for PMSMs is proposed based on the Lyapunov stability theory. This strategy exclusively leverages the posterior mean, thereby obviating the need for computationally intensive calculations associated with posterior variance in alternative approaches. Moreover, the straightforward calculation process of our proposed strategy lends itself to seamless implementation in high-frequency PMSM control. The effectiveness of the proposed strategy is demonstrated in the simulations.
Abstract:Graph Pooling technology plays an important role in graph node classification tasks. Sorting pooling technologies maintain large-value units for pooling graphs of varying sizes. However, by analyzing the statistical characteristic of activated units after pooling, we found that a large number of units dropped by sorting pooling are negative-value units that contain useful information and can contribute considerably to the final decision. To maintain more useful information, a novel pooling technology, called Geometric Pooling (GP), was proposed to contain the unique node features with negative values by measuring the similarity of all node features. We reveal the effectiveness of GP from the entropy reduction view. The experiments were conducted on TUdatasets to show the effectiveness of GP. The results showed that the proposed GP outperforms the SOTA graph pooling technologies by 1%\sim5% with fewer parameters.