Abstract:The dynamic multi-mode resource-constrained project scheduling problem is a challenging scheduling problem that requires making decisions on both the execution order of activities and their corresponding execution modes. Genetic programming has been widely applied as a hyper-heuristic to evolve priority rules that guide the selection of activity-mode pairs from the current eligible set. Recently, an activity group selection strategy has been proposed to select a subset of activities rather than a single activity at each decision point, allowing for more effective scheduling by considering the interdependence between activities. Although effective in small-scale instances, this strategy suffers from scalability issues when applied to larger problems. In this work, we enhance the scalability of the group selection strategy by introducing a knee-point-based selection mechanism to identify a promising subset of activities before evaluating their combinations. An activity ordering rule is first used to rank all eligible activity-mode pairs, followed by a knee point selection to find the promising pairs. Then, a group selection rule selects the best activity combination. We develop a multi-tree GP framework to evolve both types of rules simultaneously. Experimental results demonstrate that our approach scales well to large instances and outperforms GP with sequential decision-making in most scenarios.
Abstract:Time series classification is a fundamental machine learning task with broad real-world applications. Although many deep learning methods have proven effective in learning time-series data for classification, they were originally developed under the assumption of balanced data distributions. Once data distribution is uneven, these methods tend to ignore the minority class that is typically of higher practical significance. Oversampling methods have been designed to address this by generating minority-class samples, but their reliance on linear interpolation often hampers the preservation of temporal dynamics and the generation of diverse samples. Therefore, in this paper, we propose Evo-TFS, a novel evolutionary oversampling method that integrates both time- and frequency-domain characteristics. In Evo-TFS, strongly typed genetic programming is employed to evolve diverse, high-quality time series, guided by a fitness function that incorporates both time-domain and frequency-domain characteristics. Experiments conducted on imbalanced time series datasets demonstrate that Evo-TFS outperforms existing oversampling methods, significantly enhancing the performance of time-domain and frequency-domain classifiers.
Abstract:The widespread deployment of large language models (LLMs) has raised growing concerns about their misuse risks and associated safety issues. While prior studies have examined the safety of LLMs in general usage, code generation, and agent-based applications, their vulnerabilities in automated algorithm design remain underexplored. To fill this gap, this study investigates this overlooked safety vulnerability, with a particular focus on intelligent optimization algorithm design, given its prevalent use in complex decision-making scenarios. We introduce MalOptBench, a benchmark consisting of 60 malicious optimization algorithm requests, and propose MOBjailbreak, a jailbreak method tailored for this scenario. Through extensive evaluation of 13 mainstream LLMs including the latest GPT-5 and DeepSeek-V3.1, we reveal that most models remain highly susceptible to such attacks, with an average attack success rate of 83.59% and an average harmfulness score of 4.28 out of 5 on original harmful prompts, and near-complete failure under MOBjailbreak. Furthermore, we assess state-of-the-art plug-and-play defenses that can be applied to closed-source models, and find that they are only marginally effective against MOBjailbreak and prone to exaggerated safety behaviors. These findings highlight the urgent need for stronger alignment techniques to safeguard LLMs against misuse in algorithm design.
Abstract:In the high-cost simulation-driven design domain, translating ambiguous design requirements into a mathematical optimization formulation is a bottleneck for optimizing product performance. This process is time-consuming and heavily reliant on expert knowledge. While large language models (LLMs) offer potential for automating this task, existing approaches either suffer from poor formalization that fails to accurately align with the design intent or rely on solver feedback for data filtering, which is unavailable due to the high simulation costs. To address this challenge, we propose APF, a framework for solver-independent, automated problem formulation via LLMs designed to automatically convert engineers' natural language requirements into executable optimization models. The core of this framework is an innovative pipeline for automatically generating high-quality data, which overcomes the difficulty of constructing suitable fine-tuning datasets in the absence of high-cost solver feedback with the help of data generation and test instance annotation. The generated high-quality dataset is used to perform supervised fine-tuning on LLMs, significantly enhancing their ability to generate accurate and executable optimization problem formulations. Experimental results on antenna design demonstrate that APF significantly outperforms the existing methods in both the accuracy of requirement formalization and the quality of resulting radiation efficiency curves in meeting the design goals.




Abstract:Recent advances in neural neighborhood search methods have shown potential in tackling Vehicle Routing Problems (VRPs). However, most existing approaches rely on simplistic state representations and fuse heterogeneous information via naive concatenation, limiting their ability to capture rich structural and semantic context. To address these limitations, we propose GAMA, a neural neighborhood search method with Graph-aware Multi-modal Attention model in VRP. GAMA encodes the problem instance and its evolving solution as distinct modalities using graph neural networks, and models their intra- and inter-modal interactions through stacked self- and cross-attention layers. A gated fusion mechanism further integrates the multi-modal representations into a structured state, enabling the policy to make informed and generalizable operator selection decisions. Extensive experiments conducted across various synthetic and benchmark instances demonstrate that the proposed algorithm GAMA significantly outperforms the recent neural baselines. Further ablation studies confirm that both the multi-modal attention mechanism and the gated fusion design play a key role in achieving the observed performance gains.
Abstract:Deep Reinforcement Learning have achieved significant success in automatically devising effective traffic signal control (TSC) policies. Neural policies, however, tend to be over-parameterized and non-transparent, hindering their interpretability and deployability on resource-limited edge devices. This work presents SymLight, a priority function search framework based on Monte Carlo Tree Search (MCTS) for discovering inherently interpretable and deployable symbolic priority functions to serve as the TSC policies. The priority function, in particular, accepts traffic features as input and then outputs a priority for each traffic signal phase, which subsequently directs the phase transition. For effective search, we propose a concise yet expressive priority function representation. This helps mitigate the combinatorial explosion of the action space in MCTS. Additionally, a probabilistic structural rollout strategy is introduced to leverage structural patterns from previously discovered high-quality priority functions, guiding the rollout process. Our experiments on real-world datasets demonstrate SymLight's superior performance across a range of baselines. A key advantage is SymLight's ability to produce interpretable and deployable TSC policies while maintaining excellent performance.
Abstract:Dynamic job shop scheduling, a fundamental combinatorial optimisation problem in various industrial sectors, poses substantial challenges for effective scheduling due to frequent disruptions caused by the arrival of new jobs. State-of-the-art methods employ machine learning to learn scheduling policies offline, enabling rapid responses to dynamic events. However, these offline policies are often imperfect, necessitating the use of planning techniques such as Monte Carlo Tree Search (MCTS) to improve performance at online decision time. The unpredictability of new job arrivals complicates online planning, as decisions based on incomplete problem information are vulnerable to disturbances. To address this issue, we propose the Dynamic Robust MCTS (DyRo-MCTS) approach, which integrates action robustness estimation into MCTS. DyRo-MCTS guides the production environment toward states that not only yield good scheduling outcomes but are also easily adaptable to future job arrivals. Extensive experiments show that DyRo-MCTS significantly improves the performance of offline-learned policies with negligible additional online planning time. Moreover, DyRo-MCTS consistently outperforms vanilla MCTS across various scheduling scenarios. Further analysis reveals that its ability to make robust scheduling decisions leads to long-term, sustainable performance gains under disturbances.
Abstract:Genetic programming has undergone rapid development in recent years. However, theoretical studies of genetic programming are far behind. One of the major obstacles to theoretical studies is the challenge of developing a model to describe the relationship between fitness values and program genotypes. In this paper, we take linear genetic programming (LGP) as an example to study the fitness-to-genotype relationship. We find that the fitness expectation increases with fitness supremum over instruction editing distance, considering 1) the fitness supremum linearly increases with the instruction editing distance in LGP, 2) the fitness infimum is fixed, and 3) the fitness probabilities over different instruction editing distances are similar. We then extend these findings to explain the bloat effect and the minimum hitting time of LGP based on instruction editing distance. The bloat effect happens because it is more likely to produce better offspring by adding instructions than by removing them, given an instruction editing distance from the optimal program. The analysis of the minimum hitting time suggests that for a basic LGP genetic operator (i.e., freemut), maintaining a necessarily small program size and mutating multiple instructions each time can improve LGP performance. The reported empirical results verify our hypothesis.
Abstract:Machine learning techniques play an important role in analyzing spectral data. The spectral data of fish biomass is useful in fish production, as it carries many important chemistry properties of fish meat. However, it is challenging for existing machine learning techniques to comprehensively discover hidden patterns from fish biomass spectral data since the spectral data often have a lot of noises while the training data are quite limited. To better analyze fish biomass spectral data, this paper models it as a symbolic regression problem and solves it by a linear genetic programming method with newly proposed tunable primitives. In the symbolic regression problem, linear genetic programming automatically synthesizes regression models based on the given primitives and training data. The tunable primitives further improve the approximation ability of the regression models by tuning their inherent coefficients. Our empirical results over ten fish biomass targets show that the proposed method improves the overall performance of fish biomass composition prediction. The synthesized regression models are compact and have good interpretability, which allow us to highlight useful features over the spectrum. Our further investigation also verifies the good generality of the proposed method across various spectral data treatments and other symbolic regression problems.
Abstract:Large language models (LLMs) have revolutionized algorithm development, yet their application in symbolic regression, where algorithms automatically discover symbolic expressions from data, remains constrained and is typically designed manually by human experts. In this paper, we propose a learning-to-evolve framework that enables LLMs to automatically design selection operators for evolutionary symbolic regression algorithms. We first identify two key limitations in existing LLM-based algorithm evolution techniques: code bloat and a lack of semantic guidance. Bloat results in unnecessarily complex components, and the absence of semantic awareness can lead to ineffective exchange of useful code components, both of which can reduce the interpretability of the designed algorithm or hinder evolutionary learning progress. To address these issues, we enhance the LLM-based evolution framework for meta symbolic regression with two key innovations: bloat control and a complementary, semantics-aware selection operator. Additionally, we embed domain knowledge into the prompt, enabling the LLM to generate more effective and contextually relevant selection operators. Our experimental results on symbolic regression benchmarks show that LLMs can devise selection operators that outperform nine expert-designed baselines, achieving state-of-the-art performance. This demonstrates that LLMs can exceed expert-level algorithm design for symbolic regression.