Abstract:Human-scene vision-language tasks are increasingly prevalent in diverse social applications, yet recent advancements predominantly rely on models specifically tailored to individual tasks. Emerging research indicates that large vision-language models (VLMs) can enhance performance across various downstream vision-language understanding tasks. However, general-domain models often underperform in specialized fields. This study introduces a domain-specific Large Vision-Language Model, Human-Scene Vision-Language Model (HumanVLM), designed to provide a foundation for human-scene Vision-Language tasks. Specifically, (1) we create a large-scale human-scene multimodal image-text dataset (HumanCaption-10M) sourced from the Internet to facilitate domain-specific alignment; (2) develop a captioning approach for human-centered images, capturing human faces, bodies, and backgrounds, and construct a high-quality Human-Scene image-text dataset (HumanCaptionHQ, about 311k pairs) that contain as much detailed information as possible about human; (3) Using HumanCaption-10M and HumanCaptionHQ, we train a HumanVLM. In the experiments, we then evaluate our HumanVLM across varous downstream tasks, where it demonstrates superior overall performance among multimodal models of comparable scale, particularly excelling in human-related tasks and significantly outperforming similar models, including Qwen2VL and ChatGPT-4o. HumanVLM, alongside the data introduced, will stimulate the research in human-around fields.
Abstract:Traditional clustering algorithms often focus on the most fine-grained information and achieve clustering by calculating the distance between each pair of data points or implementing other calculations based on points. This way is not inconsistent with the cognitive mechanism of "global precedence" in human brain, resulting in those methods' bad performance in efficiency, generalization ability and robustness. To address this problem, we propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing. Firstly, GBCT generates a smaller number of granular-balls to represent the original data, and forms clusters according to the relationship between granular-balls, instead of the traditional point relationship. At the same time, its coarse-grained characteristics are not susceptible to noise, and the algorithm is efficient and robust; besides, as granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods. The completely new coarse granularity representation method of GBCT and cluster formation mode can also used to improve other traditional methods.
Abstract:In actual scenarios, whether manually or automatically annotated, label noise is inevitably generated in the training data, which can affect the effectiveness of deep CNN models. The popular solutions require data cleaning or designing additional optimizations to punish the data with mislabeled data, thereby enhancing the robustness of models. However, these methods come at the cost of weakening or even losing some data during the training process. As we know, content is the inherent attribute of an image that does not change with changes in annotations. In this study, we propose a general granular-ball computing (GBC) module that can be embedded into a CNN model, where the classifier finally predicts the label of granular-ball ($gb$) samples instead of each individual samples. Specifically, considering the classification task: (1) in forward process, we split the input samples as $gb$ samples at feature-level, each of which can correspond to multiple samples with varying numbers and share one single label; (2) during the backpropagation process, we modify the gradient allocation strategy of the GBC module to enable it to propagate normally; and (3) we develop an experience replay policy to ensure the stability of the training process. Experiments demonstrate that the proposed method can improve the robustness of CNN models with no additional data or optimization.
Abstract:The previous advancements in pathology image understanding primarily involved developing models tailored to specific tasks. Recent studies has demonstrated that the large vision-language model can enhance the performance of various downstream tasks in medical image understanding. In this study, we developed a domain-specific large language-vision assistant (PA-LLaVA) for pathology image understanding. Specifically, (1) we first construct a human pathology image-text dataset by cleaning the public medical image-text data for domain-specific alignment; (2) Using the proposed image-text data, we first train a pathology language-image pretraining (PLIP) model as the specialized visual encoder for pathology image, and then we developed scale-invariant connector to avoid the information loss caused by image scaling; (3) We adopt two-stage learning to train PA-LLaVA, first stage for domain alignment, and second stage for end to end visual question \& answering (VQA) task. In experiments, we evaluate our PA-LLaVA on both supervised and zero-shot VQA datasets, our model achieved the best overall performance among multimodal models of similar scale. The ablation experiments also confirmed the effectiveness of our design. We posit that our PA-LLaVA model and the datasets presented in this work can promote research in field of computational pathology. All codes are available at: https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA}{https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA
Abstract:This paper presents a novel framework for continual feature selection (CFS) in data preprocessing, particularly in the context of an open and dynamic environment where unknown classes may emerge. CFS encounters two primary challenges: the discovery of unknown knowledge and the transfer of known knowledge. To this end, the proposed CFS method combines the strengths of continual learning (CL) with granular-ball computing (GBC), which focuses on constructing a granular-ball knowledge base to detect unknown classes and facilitate the transfer of previously learned knowledge for further feature selection. CFS consists of two stages: initial learning and open learning. The former aims to establish an initial knowledge base through multi-granularity representation using granular-balls. The latter utilizes prior granular-ball knowledge to identify unknowns, updates the knowledge base for granular-ball knowledge transfer, reinforces old knowledge, and integrates new knowledge. Subsequently, we devise an optimal feature subset mechanism that incorporates minimal new features into the existing optimal subset, often yielding superior results during each period. Extensive experimental results on public benchmark datasets demonstrate our method's superiority in terms of both effectiveness and efficiency compared to state-of-the-art feature selection methods.
Abstract:Unveil, model, and comprehend the causal mechanisms underpinning natural phenomena stand as fundamental endeavors across myriad scientific disciplines. Meanwhile, new knowledge emerges when discovering causal relationships from data. Existing causal learning algorithms predominantly focus on the isolated effects of variables, overlook the intricate interplay of multiple variables and their collective behavioral patterns. Furthermore, the ubiquity of high-dimensional data exacts a substantial temporal cost for causal algorithms. In this paper, we develop a novel method called MgCSL (Multi-granularity Causal Structure Learning), which first leverages sparse auto-encoder to explore coarse-graining strategies and causal abstractions from micro-variables to macro-ones. MgCSL then takes multi-granularity variables as inputs to train multilayer perceptrons and to delve the causality between variables. To enhance the efficacy on high-dimensional data, MgCSL introduces a simplified acyclicity constraint to adeptly search the directed acyclic graph among variables. Experimental results show that MgCSL outperforms competitive baselines, and finds out explainable causal connections on fMRI datasets.
Abstract:Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on $k$-means or $k$-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB, instead of randomly selecting the center and calculating the distances between it to all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, a $k$-nearest neighbors algorithm (GB$k$NN++) which can reduce misclassification at class boundary to some extent is presented. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on $20$ public benchmark data sets.
Abstract:Human cognition has a ``large-scale first'' cognitive mechanism, therefore possesses adaptive multi-granularity description capabilities. This results in computational characteristics such as efficiency, robustness, and interpretability. Although most existing artificial intelligence learning methods have certain multi-granularity features, they do not fully align with the ``large-scale first'' cognitive mechanism. Multi-granularity granular-ball computing is an important model method developed in recent years. This method can use granular-balls of different sizes to adaptively represent and cover the sample space, and perform learning based on granular-balls. Since the number of coarse-grained "granular-ball" is smaller than the number of sample points, granular-ball computing is more efficient; the coarse-grained characteristics of granular-balls are less likely to be affected by fine-grained sample points, making them more robust; the multi-granularity structure of granular-balls can produce topological structures and coarse-grained descriptions, providing natural interpretability. Granular-ball computing has now been effectively extended to various fields of artificial intelligence, developing theoretical methods such as granular-ball classifiers, granular-ball clustering methods, granular-ball neural networks, granular-ball rough sets, and granular-ball evolutionary computation, significantly improving the efficiency, noise robustness, and interpretability of existing methods. It has good innovation, practicality, and development potential. This article provides a systematic introduction to these methods and analyzes the main problems currently faced by granular-ball computing, discussing both the primary applicable scenarios for granular-ball computing and offering references and suggestions for future researchers to improve this theory.
Abstract:The existing intelligent optimization algorithms are designed based on the finest granularity, i.e., a point. This leads to weak global search ability and inefficiency. To address this problem, we proposed a novel multi-granularity optimization algorithm, namely granular-ball optimization algorithm (GBO), by introducing granular-ball computing. GBO uses many granular-balls to cover the solution space. Quite a lot of small and fine-grained granular-balls are used to depict the important parts, and a little number of large and coarse-grained granular-balls are used to depict the inessential parts. Fine multi-granularity data description ability results in a higher global search capability and faster convergence speed. In comparison with the most popular and state-of-the-art algorithms, the experiments on twenty benchmark functions demonstrate its better performance. The faster speed, higher approximation ability of optimal solution, no hyper-parameters, and simpler design of GBO make it an all-around replacement of most of the existing popular intelligent optimization algorithms.
Abstract:In recent years, the problem of fuzzy clustering has been widely concerned. The membership iteration of existing methods is mostly considered globally, which has considerable problems in noisy environments, and iterative calculations for clusters with a large number of different sample sizes are not accurate and efficient. In this paper, starting from the strategy of large-scale priority, the data is fuzzy iterated using granular-balls, and the membership degree of data only considers the two granular-balls where it is located, thus improving the efficiency of iteration. The formed fuzzy granular-balls set can use more processing methods in the face of different data scenarios, which enhances the practicability of fuzzy clustering calculations.