Abstract:Robotic manipulation is often challenging due to the long-horizon tasks and the complex object relationships. A common solution is to develop a task and motion planning framework that integrates planning for high-level task and low-level motion. Recently, inspired by the powerful reasoning ability of Large Language Models (LLMs), LLM-based planning approaches have achieved remarkable progress. However, these methods still heavily rely on expert-specific knowledge, often generating invalid plans for unseen and unfamiliar tasks. To address this issue, we propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization. It is the first expert-free planning framework since we combine the world knowledge from LLMs with formal reasoning, resulting in improved generalization capability to new tasks. Specifically, differ to most existing work, our LM-SymOpt employs LLMs to translate natural language instructions into symbolic representations, thereby representing actions as high-level symbols and reducing the search space for planning. Next, after evaluating the action probability of completing the task using LLMs, a weighted random sampling method is introduced to generate candidate plans. Their feasibility is assessed through symbolic reasoning and their cost efficiency is then evaluated using trajectory optimization for selecting the optimal planning. Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
Abstract:Feature Generative Adversarial Networks have emerged as powerful generative models in producing high-quality representations of unseen classes within the scope of Zero-shot Learning (ZSL). This paper delves into the pivotal influence of unseen class priors within the framework of transductive ZSL (TZSL) and illuminates the finding that even a marginal prior bias can result in substantial accuracy declines. Our extensive analysis uncovers that this inefficacy fundamentally stems from the utilization of an unconditional unseen discriminator - a core component in existing TZSL. We further establish that the detrimental effects of this component are inevitable unless the generator perfectly fits class-specific distributions. Building on these insights, we introduce our Improved Feature Generation Framework, termed I-VAEGAN, which incorporates two novel components: Pseudo-conditional Feature Adversarial (PFA) learning and Variational Embedding Regression (VER). PFA circumvents the need for prior estimation by explicitly injecting the predicted semantics as pseudo conditions for unseen classes premised by precise semantic regression. Meanwhile, VER utilizes reconstructive pre-training to learn class statistics, obtaining better semantic regression. Our I-VAEGAN achieves state-of-the-art TZSL accuracy across various benchmarks and priors. Our code would be released upon acceptance.
Abstract:Zero-Shot Learning (ZSL) aims to enable classifiers to identify unseen classes by enhancing data efficiency at the class level. This is achieved by generating image features from pre-defined semantics of unseen classes. However, most current approaches heavily depend on the number of samples from seen classes, i.e. they do not consider instance-level effectiveness. In this paper, we demonstrate that limited seen examples generally result in deteriorated performance of generative models. To overcome these challenges, we propose ZeroDiff, a Diffusion-based Generative ZSL model. This unified framework incorporates diffusion models to improve data efficiency at both the class and instance levels. Specifically, for instance-level effectiveness, ZeroDiff utilizes a forward diffusion chain to transform limited data into an expanded set of noised data. For class-level effectiveness, we design a two-branch generation structure that consists of a Diffusion-based Feature Generator (DFG) and a Diffusion-based Representation Generator (DRG). DFG focuses on learning and sampling the distribution of cross-entropy-based features, whilst DRG learns the supervised contrastive-based representation to boost the zero-shot capabilities of DFG. Additionally, we employ three discriminators to evaluate generated features from various aspects and introduce a Wasserstein-distance-based mutual learning loss to transfer knowledge among discriminators, thereby enhancing guidance for generation. Demonstrated through extensive experiments on three popular ZSL benchmarks, our ZeroDiff not only achieves significant improvements over existing ZSL methods but also maintains robust performance even with scarce training data. Code will be released upon acceptance.
Abstract:As the current initialization method in the state-of-the-art Stereo Visual-Inertial SLAM framework, ORB-SLAM3 has limitations. Its success depends on the performance of the pure stereo SLAM system and is based on the underlying assumption that pure visual SLAM can accurately estimate the camera trajectory, which is essential for inertial parameter estimation. Meanwhile, the further improved initialization method for ORB-SLAM3, known as Stereo-NEC, is time-consuming due to applying keypoint tracking to estimate gyroscope bias with normal epipolar constraints. To address the limitations of previous methods, this paper proposes a method aimed at enhancing translation accuracy during the initialization stage. The fundamental concept of our method is to improve the translation estimate with a 3 Degree-of-Freedom (DoF) Bundle Adjustment (BA), independently, while the rotation estimate is fixed, instead of using ORB-SLAM3's 6-DoF BA. Additionally, the rotation estimate will be updated by considering IMU measurements and gyroscope bias, unlike ORB-SLAM3's rotation, which is directly obtained from stereo visual odometry and may yield inferior results when operating in challenging scenarios. We also conduct extensive evaluations on the public benchmark, the EuRoC dataset, demonstrating that our method excels in accuracy.
Abstract:Deep learning uses an increasing amount of computation and data to solve very specific problems. By stark contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. One ability that seems crucial to this kind of general intelligence is meta-reasoning, i.e., our ability to reason about reasoning. To make deep learning do more from less, we propose the differentiable logical meta interpreter (DLMI). The key idea is to realize a meta-interpreter using differentiable forward-chaining reasoning in first-order logic. This directly allows DLMI to reason and even learn about its own operations. This is different from performing object-level deep reasoning and learning, which refers in some way to entities external to the system. In contrast, DLMI is able to reflect or introspect, i.e., to shift from meta-reasoning to object-level reasoning and vice versa. Among many other experimental evaluations, we illustrate this behavior using the novel task of "repairing Kandinsky patterns," i.e., how to edit the objects in an image so that it agrees with a given logical concept.
Abstract:Generating consistent and high-quality images from given texts is essential for visual-language understanding. Although impressive results have been achieved in generating high-quality images, text-image consistency is still a major concern in existing GAN-based methods. Particularly, the most popular metric $R$-precision may not accurately reflect the text-image consistency, often resulting in very misleading semantics in the generated images. Albeit its significance, how to design a better text-image consistency metric surprisingly remains under-explored in the community. In this paper, we make a further step forward to develop a novel CLIP-based metric termed as Semantic Similarity Distance (SSD), which is both theoretically founded from a distributional viewpoint and empirically verified on benchmark datasets. Benefiting from the proposed metric, we further design the Parallel Deep Fusion Generative Adversarial Networks (PDF-GAN), which can fuse semantic information at different granularities and capture accurate semantics. Equipped with two novel plug-and-play components: Hard-Negative Sentence Constructor and Semantic Projection, the proposed PDF-GAN can mitigate inconsistent semantics and bridge the text-image semantic gap. A series of experiments show that, as opposed to current state-of-the-art methods, our PDF-GAN can lead to significantly better text-image consistency while maintaining decent image quality on the CUB and COCO datasets.
Abstract:Zero-shot learning (ZSL) aims to identify unseen classes with zero samples during training. Broadly speaking, present ZSL methods usually adopt class-level semantic labels and compare them with instance-level semantic predictions to infer unseen classes. However, we find that such existing models mostly produce imbalanced semantic predictions, i.e. these models could perform precisely for some semantics, but may not for others. To address the drawback, we aim to introduce an imbalanced learning framework into ZSL. However, we find that imbalanced ZSL has two unique challenges: (1) Its imbalanced predictions are highly correlated with the value of semantic labels rather than the number of samples as typically considered in the traditional imbalanced learning; (2) Different semantics follow quite different error distributions between classes. To mitigate these issues, we first formalize ZSL as an imbalanced regression problem which offers theoretical foundations to interpret how semantic labels lead to imbalanced semantic predictions. We then propose a re-weighted loss termed Re-balanced Mean-Squared Error (ReMSE), which tracks the mean and variance of error distributions, thus ensuring rebalanced learning across classes. As a major contribution, we conduct a series of analyses showing that ReMSE is theoretically well established. Extensive experiments demonstrate that the proposed method effectively alleviates the imbalance in semantic prediction and outperforms many state-of-the-art ZSL methods.
Abstract:Variational inference with Gaussian mixture models (GMMs) enables learning of highly-tractable yet multi-modal approximations of intractable target distributions. GMMs are particular relevant for problem settings with up to a few hundred dimensions, for example in robotics, for modelling distributions over trajectories or joint distributions. This work focuses on two very effective methods for GMM-based variational inference that both employ independent natural gradient updates for the individual components and the categorical distribution of the weights. We show for the first time, that their derived updates are equivalent, although their practical implementations and theoretical guarantees differ. We identify several design choices that distinguish both approaches, namely with respect to sample selection, natural gradient estimation, stepsize adaptation, and whether trust regions are enforced or the number of components adapted. We perform extensive ablations on these design choices and show that they strongly affect the efficiency of the optimization and the variability of the learned distribution. Based on our insights, we propose a novel instantiation of our generalized framework, that combines first-order natural gradient estimates with trust-regions and component adaption, and significantly outperforms both previous methods in all our experiments.
Abstract:Using generative models to synthesize visual features from semantic distribution is one of the most popular solutions to ZSL image classification in recent years. The triplet loss (TL) is popularly used to generate realistic visual distributions from semantics by automatically searching discriminative representations. However, the traditional TL cannot search reliable unseen disentangled representations due to the unavailability of unseen classes in ZSL. To alleviate this drawback, we propose in this work a multi-modal triplet loss (MMTL) which utilizes multimodal information to search a disentangled representation space. As such, all classes can interplay which can benefit learning disentangled class representations in the searched space. Furthermore, we develop a novel model called Disentangling Class Representation Generative Adversarial Network (DCR-GAN) focusing on exploiting the disentangled representations in training, feature synthesis, and final recognition stages. Benefiting from the disentangled representations, DCR-GAN could fit a more realistic distribution over both seen and unseen features. Extensive experiments show that our proposed model can lead to superior performance to the state-of-the-arts on four benchmark datasets. Our code is available at https://github.com/FouriYe/DCRGAN-TMM.
Abstract:Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.