Abstract:Preserving boundary continuity in the translation of 360-degree panoramas remains a significant challenge for existing text-driven image-to-image translation methods. These methods often produce visually jarring discontinuities at the translated panorama's boundaries, disrupting the immersive experience. To address this issue, we propose 360PanT, a training-free approach to text-based 360-degree panorama-to-panorama translation with boundary continuity. Our 360PanT achieves seamless translations through two key components: boundary continuity encoding and seamless tiling translation with spatial control. Firstly, the boundary continuity encoding embeds critical boundary continuity information of the input 360-degree panorama into the noisy latent representation by constructing an extended input image. Secondly, leveraging this embedded noisy latent representation and guided by a target prompt, the seamless tiling translation with spatial control enables the generation of a translated image with identical left and right halves while adhering to the extended input's structure and semantic layout. This process ensures a final translated 360-degree panorama with seamless boundary continuity. Experimental results on both real-world and synthesized datasets demonstrate the effectiveness of our 360PanT in translating 360-degree panoramas. Code is available at \href{https://github.com/littlewhitesea/360PanT}{https://github.com/littlewhitesea/360PanT}.
Abstract:Positive-unlabeled (PU) learning aims to train a classifier using the data containing only labeled-positive instances and unlabeled instances. However, existing PU learning methods are generally hard to achieve satisfactory performance on trifurcate data, where the positive instances distribute on both sides of the negative instances. To address this issue, firstly we propose a PU classifier with asymmetric loss (PUAL), by introducing a structure of asymmetric loss on positive instances into the objective function of the global and local learning classifier. Then we develop a kernel-based algorithm to enable PUAL to obtain non-linear decision boundary. We show that, through experiments on both simulated and real-world datasets, PUAL can achieve satisfactory classification on trifurcate data.
Abstract:Existing 3D occupancy networks demand significant hardware resources, hindering the deployment of edge devices. Binarized Neural Networks (BNN) offer substantially reduced computational and memory requirements. However, their performance decreases notably compared to full-precision networks. Moreover, it is challenging to enhance the performance of binarized models by increasing the number of binarized convolutional layers, which limits their practicability for 3D occupancy prediction. To bridge these gaps, we propose a novel binarized deep convolution (BDC) unit that effectively enhances performance while increasing the number of binarized convolutional layers. Firstly, through theoretical analysis, we demonstrate that 1 \times 1 binarized convolutions introduce minimal binarization errors. Therefore, additional binarized convolutional layers are constrained to 1 \times 1 in the BDC unit. Secondly, we introduce the per-channel weight branch to mitigate the impact of binarization errors from unimportant channel features on the performance of binarized models, thereby improving performance while increasing the number of binarized convolutional layers. Furthermore, we decompose the 3D occupancy network into four convolutional modules and utilize the proposed BDC unit to binarize these modules. Our BDC-Occ model is created by applying the proposed BDC unit to binarize the existing 3D occupancy networks. Comprehensive quantitative and qualitative experiments demonstrate that the proposed BDC-Occ is the state-of-the-art binarized 3D occupancy network algorithm.
Abstract:We address prevailing challenges of the brain-powered research, departing from the observation that the literature hardly recover accurate spatial information and require subject-specific models. To address these challenges, we propose UMBRAE, a unified multimodal decoding of brain signals. First, to extract instance-level conceptual and spatial details from neural signals, we introduce an efficient universal brain encoder for multimodal-brain alignment and recover object descriptions at multiple levels of granularity from subsequent multimodal large language model (MLLM). Second, we introduce a cross-subject training strategy mapping subject-specific features to a common feature space. This allows a model to be trained on multiple subjects without extra resources, even yielding superior results compared to subject-specific models. Further, we demonstrate this supports weakly-supervised adaptation to new subjects, with only a fraction of the total training data. Experiments demonstrate that UMBRAE not only achieves superior results in the newly introduced tasks but also outperforms methods in well established tasks. To assess our method, we construct and share with the community a comprehensive brain understanding benchmark BrainHub. Our code and benchmark are available at https://weihaox.github.io/UMBRAE.
Abstract:Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same persons captured by visible (VIS) and infrared (IR) cameras. Existing VI-ReID methods ignore high-order structure information of features while being relatively difficult to learn a reasonable common feature space due to the large modality discrepancy between VIS and IR images. To address the above problems, we propose a novel high-order structure based middle-feature learning network (HOS-Net) for effective VI-ReID. Specifically, we first leverage a short- and long-range feature extraction (SLE) module to effectively exploit both short-range and long-range features. Then, we propose a high-order structure learning (HSL) module to successfully model the high-order relationship across different local features of each person image based on a whitened hypergraph network.This greatly alleviates model collapse and enhances feature representations. Finally, we develop a common feature space learning (CFL) module to learn a discriminative and reasonable common feature space based on middle features generated by aligning features from different modalities and ranges. In particular, a modality-range identity-center contrastive (MRIC) loss is proposed to reduce the distances between the VIS, IR, and middle features, smoothing the training process. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets show that our HOS-Net achieves superior state-of-the-art performance. Our code is available at \url{https://github.com/Jaulaucoeng/HOS-Net}.
Abstract:Most existing GAN inversion methods either achieve accurate reconstruction but lack editability or offer strong editability at the cost of fidelity. Hence, how to balance the distortioneditability trade-off is a significant challenge for GAN inversion. To address this challenge, we introduce a novel spatial-contextual discrepancy information compensationbased GAN-inversion method (SDIC), which consists of a discrepancy information prediction network (DIPN) and a discrepancy information compensation network (DICN). SDIC follows a "compensate-and-edit" paradigm and successfully bridges the gap in image details between the original image and the reconstructed/edited image. On the one hand, DIPN encodes the multi-level spatial-contextual information of the original and initial reconstructed images and then predicts a spatial-contextual guided discrepancy map with two hourglass modules. In this way, a reliable discrepancy map that models the contextual relationship and captures finegrained image details is learned. On the other hand, DICN incorporates the predicted discrepancy information into both the latent code and the GAN generator with different transformations, generating high-quality reconstructed/edited images. This effectively compensates for the loss of image details during GAN inversion. Both quantitative and qualitative experiments demonstrate that our proposed method achieves the excellent distortion-editability trade-off at a fast inference speed for both image inversion and editing tasks.
Abstract:Personalized text-to-image (T2I) synthesis based on diffusion models has attracted significant attention in recent research. However, existing methods primarily concentrate on customizing subjects or styles, neglecting the exploration of global geometry. In this study, we propose an approach that focuses on the customization of 360-degree panoramas, which inherently possess global geometric properties, using a T2I diffusion model. To achieve this, we curate a paired image-text dataset specifically designed for the task and subsequently employ it to fine-tune a pre-trained T2I diffusion model with LoRA. Nevertheless, the fine-tuned model alone does not ensure the continuity between the leftmost and rightmost sides of the synthesized images, a crucial characteristic of 360-degree panoramas. To address this issue, we propose a method called StitchDiffusion. Specifically, we perform pre-denoising operations twice at each time step of the denoising process on the stitch block consisting of the leftmost and rightmost image regions. Furthermore, a global cropping is adopted to synthesize seamless 360-degree panoramas. Experimental results demonstrate the effectiveness of our customized model combined with the proposed StitchDiffusion in generating high-quality 360-degree panoramic images. Moreover, our customized model exhibits exceptional generalization ability in producing scenes unseen in the fine-tuning dataset. Code is available at https://github.com/littlewhitesea/StitchDiffusion.
Abstract:In this work we present DREAM, an fMRI-to-image method for reconstructing viewed images from brain activities, grounded on fundamental knowledge of the human visual system. We craft reverse pathways that emulate the hierarchical and parallel nature of how humans perceive the visual world. These tailored pathways are specialized to decipher semantics, color, and depth cues from fMRI data, mirroring the forward pathways from visual stimuli to fMRI recordings. To do so, two components mimic the inverse processes within the human visual system: the Reverse Visual Association Cortex (R-VAC) which reverses pathways of this brain region, extracting semantics from fMRI data; the Reverse Parallel PKM (R-PKM) component simultaneously predicting color and depth from fMRI signals. The experiments indicate that our method outperforms the current state-of-the-art models in terms of the consistency of appearance, structure, and semantics. Code will be made publicly available to facilitate further research in this field.
Abstract:Recent years have seen remarkable progress in deep learning powered visual content creation. This includes 3D-aware generative image synthesis, which produces high-fidelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The 3D-aware generative models have shown that the introduction of 3D information can lead to more controllable image generation. The task of 3D-aware image synthesis has taken the field of computer vision by storm, with hundreds of papers accepted to top-tier journals and conferences in recent year (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at https://weihaox.github.io/awesome-3D-aware-synthesis.
Abstract:In this paper, we propose to model the video dynamics by learning the trajectory of independently inverted latent codes from GANs. The entire sequence is seen as discrete-time observations of a continuous trajectory of the initial latent code, by considering each latent code as a moving particle and the latent space as a high-dimensional dynamic system. The latent codes representing different frames are therefore reformulated as state transitions of the initial frame, which can be modeled by neural ordinary differential equations. The learned continuous trajectory allows us to perform infinite frame interpolation and consistent video manipulation. The latter task is reintroduced for video editing with the advantage of requiring the core operations to be applied to the first frame only while maintaining temporal consistency across all frames. Extensive experiments demonstrate that our method achieves state-of-the-art performance but with much less computation.