Abstract:In this paper, we first propose a novel method for transferring material transformations across different scenes. Building on disentangled Neural Radiance Field (NeRF) representations, our approach learns to map Bidirectional Reflectance Distribution Functions (BRDF) from pairs of scenes observed in varying conditions, such as dry and wet. The learned transformations can then be applied to unseen scenes with similar materials, therefore effectively rendering the transformation learned with an arbitrary level of intensity. Extensive experiments on synthetic scenes and real-world objects validate the effectiveness of our approach, showing that it can learn various transformations such as wetness, painting, coating, etc. Our results highlight not only the versatility of our method but also its potential for practical applications in computer graphics. We publish our method implementation, along with our synthetic/real datasets on https://github.com/astra-vision/BRDFTransform
Abstract:Domain adaptation has been extensively investigated in computer vision but still requires access to target data at the training time, which might be difficult to obtain in some uncommon conditions. In this paper, we present a new framework for domain adaptation relying on a single Vision-Language (VL) latent embedding instead of full target data. First, leveraging a contrastive language-image pre-training model (CLIP), we propose prompt/photo-driven instance normalization (PIN). PIN is a feature augmentation method that mines multiple visual styles using a single target VL latent embedding, by optimizing affine transformations of low-level source features. The VL embedding can come from a language prompt describing the target domain, a partially optimized language prompt, or a single unlabeled target image. Second, we show that these mined styles (i.e., augmentations) can be used for zero-shot (i.e., target-free) and one-shot unsupervised domain adaptation. Experiments on semantic segmentation demonstrate the effectiveness of the proposed method, which outperforms relevant baselines in the zero-shot and one-shot settings.
Abstract:Large-scale vision-language pre-trained (VLP) models (e.g., CLIP) are renowned for their versatility, as they can be applied to diverse applications in a zero-shot setup. However, when these models are used in specific domains, their performance often falls short due to domain gaps or the under-representation of these domains in the training data. While fine-tuning VLP models on custom datasets with human-annotated labels can address this issue, annotating even a small-scale dataset (e.g., 100k samples) can be an expensive endeavor, often requiring expert annotators if the task is complex. To address these challenges, we propose LatteCLIP, an unsupervised method for fine-tuning CLIP models on classification with known class names in custom domains, without relying on human annotations. Our method leverages Large Multimodal Models (LMMs) to generate expressive textual descriptions for both individual images and groups of images. These provide additional contextual information to guide the fine-tuning process in the custom domains. Since LMM-generated descriptions are prone to hallucination or missing details, we introduce a novel strategy to distill only the useful information and stabilize the training. Specifically, we learn rich per-class prototype representations from noisy generated texts and dual pseudo-labels. Our experiments on 10 domain-specific datasets show that LatteCLIP outperforms pre-trained zero-shot methods by an average improvement of +4.74 points in top-1 accuracy and other state-of-the-art unsupervised methods by +3.45 points.
Abstract:We consider the problem of adapting a contrastively pretrained vision-language model like CLIP (Radford et al., 2021) for few-shot classification. The existing literature addresses this problem by learning a linear classifier of the frozen visual features, optimizing word embeddings, or learning external feature adapters. This paper introduces an alternative way for CLIP adaptation without adding 'external' parameters to optimize. We find that simply fine-tuning the last projection matrix of the vision encoder leads to strong performance compared to the existing baselines. Furthermore, we show that regularizing training with the distance between the fine-tuned and pretrained matrices adds reliability for adapting CLIP through this layer. Perhaps surprisingly, this approach, coined ProLIP, yields performances on par or better than state of the art on 11 few-shot classification benchmarks, few-shot domain generalization, cross-dataset transfer and test-time adaptation. Code will be made available at https://github.com/astra-vision/ProLIP .
Abstract:We address prevailing challenges of the brain-powered research, departing from the observation that the literature hardly recover accurate spatial information and require subject-specific models. To address these challenges, we propose UMBRAE, a unified multimodal decoding of brain signals. First, to extract instance-level conceptual and spatial details from neural signals, we introduce an efficient universal brain encoder for multimodal-brain alignment and recover object descriptions at multiple levels of granularity from subsequent multimodal large language model (MLLM). Second, we introduce a cross-subject training strategy mapping subject-specific features to a common feature space. This allows a model to be trained on multiple subjects without extra resources, even yielding superior results compared to subject-specific models. Further, we demonstrate this supports weakly-supervised adaptation to new subjects, with only a fraction of the total training data. Experiments demonstrate that UMBRAE not only achieves superior results in the newly introduced tasks but also outperforms methods in well established tasks. To assess our method, we construct and share with the community a comprehensive brain understanding benchmark BrainHub. Our code and benchmark are available at https://weihaox.github.io/UMBRAE.
Abstract:We propose the task of Panoptic Scene Completion (PSC) which extends the recently popular Semantic Scene Completion (SSC) task with instance-level information to produce a richer understanding of the 3D scene. Our PSC proposal utilizes a hybrid mask-based technique on the non-empty voxels from sparse multi-scale completions. Whereas the SSC literature overlooks uncertainty which is critical for robotics applications, we instead propose an efficient ensembling to estimate both voxel-wise and instance-wise uncertainties along PSC. This is achieved by building on a multi-input multi-output (MIMO) strategy, while improving performance and yielding better uncertainty for little additional compute. Additionally, we introduce a technique to aggregate permutation-invariant mask predictions. Our experiments demonstrate that our method surpasses all baselines in both Panoptic Scene Completion and uncertainty estimation on three large-scale autonomous driving datasets. Our code and data are available at https://astra-vision.github.io/PaSCo .
Abstract:Generalization to new domains not seen during training is one of the long-standing goals and challenges in deploying neural networks in real-world applications. Existing generalization techniques necessitate substantial data augmentation, potentially sourced from external datasets, and aim at learning invariant representations by imposing various alignment constraints. Large-scale pretraining has recently shown promising generalization capabilities, along with the potential of bridging different modalities. For instance, the recent advent of vision-language models like CLIP has opened the doorway for vision models to exploit the textual modality. In this paper, we introduce a simple framework for generalizing semantic segmentation networks by employing language as the source of randomization. Our recipe comprises three key ingredients: i) the preservation of the intrinsic CLIP robustness through minimal fine-tuning, ii) language-driven local style augmentation, and iii) randomization by locally mixing the source and augmented styles during training. Extensive experiments report state-of-the-art results on various generalization benchmarks. The code will be made available.
Abstract:In this paper, we propose a method to extract physically-based rendering (PBR) materials from a single real-world image. We do so in two steps: first, we map regions of the image to material concepts using a diffusion model, which allows the sampling of texture images resembling each material in the scene. Second, we benefit from a separate network to decompose the generated textures into Spatially Varying BRDFs (SVBRDFs), providing us with materials ready to be used in rendering applications. Our approach builds on existing synthetic material libraries with SVBRDF ground truth, but also exploits a diffusion-generated RGB texture dataset to allow generalization to new samples using unsupervised domain adaptation (UDA). Our contributions are thoroughly evaluated on synthetic and real-world datasets. We further demonstrate the applicability of our method for editing 3D scenes with materials estimated from real photographs. The code and models will be made open-source. Project page: https://astra-vision.github.io/MaterialPalette/
Abstract:In this work we present DREAM, an fMRI-to-image method for reconstructing viewed images from brain activities, grounded on fundamental knowledge of the human visual system. We craft reverse pathways that emulate the hierarchical and parallel nature of how humans perceive the visual world. These tailored pathways are specialized to decipher semantics, color, and depth cues from fMRI data, mirroring the forward pathways from visual stimuli to fMRI recordings. To do so, two components mimic the inverse processes within the human visual system: the Reverse Visual Association Cortex (R-VAC) which reverses pathways of this brain region, extracting semantics from fMRI data; the Reverse Parallel PKM (R-PKM) component simultaneously predicting color and depth from fMRI signals. The experiments indicate that our method outperforms the current state-of-the-art models in terms of the consistency of appearance, structure, and semantics. Code will be made publicly available to facilitate further research in this field.
Abstract:Domain adaptation has been vastly investigated in computer vision but still requires access to target images at train time, which might be intractable in some conditions, especially for long-tail samples. In this paper, we propose the task of `Prompt-driven Zero-shot Domain Adaptation', where we adapt a model trained on a source domain using only a general textual description of the target domain, i.e., a prompt. First, we leverage a pretrained contrastive vision-language model (CLIP) to optimize affine transformations of source features, bringing them closer to target text embeddings, while preserving their content and semantics. Second, we show that augmented features can be used to perform zero-shot domain adaptation for semantic segmentation. Experiments demonstrate that our method significantly outperforms CLIP-based style transfer baselines on several datasets for the downstream task at hand. Our prompt-driven approach even outperforms one-shot unsupervised domain adaptation on some datasets, and gives comparable results on others. The code is available at https://github.com/astra-vision/PODA.