Adobe Research
Abstract:We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: \url{https://vrroom.github.io/synthlight/}
Abstract:We present a lighting-aware image editing pipeline that, given a portrait image and a text prompt, performs single image relighting. Our model modifies the lighting and color of both the foreground and background to align with the provided text description. The unbounded nature in creativeness of a text allows us to describe the lighting of a scene with any sensory features including temperature, emotion, smell, time, and so on. However, the modeling of such mapping between the unbounded text and lighting is extremely challenging due to the lack of dataset where there exists no scalable data that provides large pairs of text and relighting, and therefore, current text-driven image editing models does not generalize to lighting-specific use cases. We overcome this problem by introducing a novel data synthesis pipeline: First, diverse and creative text prompts that describe the scenes with various lighting are automatically generated under a crafted hierarchy using a large language model (*e.g.,* ChatGPT). A text-guided image generation model creates a lighting image that best matches the text. As a condition of the lighting images, we perform image-based relighting for both foreground and background using a single portrait image or a set of OLAT (One-Light-at-A-Time) images captured from lightstage system. Particularly for the background relighting, we represent the lighting image as a set of point lights and transfer them to other background images. A generative diffusion model learns the synthesized large-scale data with auxiliary task augmentation (*e.g.,* portrait delighting and light positioning) to correlate the latent text and lighting distribution for text-guided portrait relighting.
Abstract:Predicting diverse object motions from a single static image remains challenging, as current video generation models often entangle object movement with camera motion and other scene changes. While recent methods can predict specific motions from motion arrow input, they rely on synthetic data and predefined motions, limiting their application to complex scenes. We introduce Motion Modes, a training-free approach that explores a pre-trained image-to-video generator's latent distribution to discover various distinct and plausible motions focused on selected objects in static images. We achieve this by employing a flow generator guided by energy functions designed to disentangle object and camera motion. Additionally, we use an energy inspired by particle guidance to diversify the generated motions, without requiring explicit training data. Experimental results demonstrate that Motion Modes generates realistic and varied object animations, surpassing previous methods and even human predictions regarding plausibility and diversity. Project Webpage: https://motionmodes.github.io/
Abstract:We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait by predicting its appearance under disturbing shadows and highlights. Portrait shadow removal is a highly ill-posed problem where multiple plausible solutions can be found based on a single image. While existing works have solved this problem by predicting the appearance residuals that can propagate local shadow distribution, such methods are often incomplete and lead to unnatural predictions, especially for portraits with hard shadows. We overcome the limitations of existing local propagation methods by formulating the removal problem as a generation task where a diffusion model learns to globally rebuild the human appearance from scratch as a condition of an input portrait image. For robust and natural shadow removal, we propose to train the diffusion model with a compositional repurposing framework: a pre-trained text-guided image generation model is first fine-tuned to harmonize the lighting and color of the foreground with a background scene by using a background harmonization dataset; and then the model is further fine-tuned to generate a shadow-free portrait image via a shadow-paired dataset. To overcome the limitation of losing fine details in the latent diffusion model, we propose a guided-upsampling network to restore the original high-frequency details (wrinkles and dots) from the input image. To enable our compositional training framework, we construct a high-fidelity and large-scale dataset using a lightstage capturing system and synthetic graphics simulation. Our generative framework effectively removes shadows caused by both self and external occlusions while maintaining original lighting distribution and high-frequency details. Our method also demonstrates robustness to diverse subjects captured in real environments.
Abstract:Existing portrait relighting methods struggle with precise control over facial shadows, particularly when faced with challenges such as handling hard shadows from directional light sources or adjusting shadows while remaining in harmony with existing lighting conditions. In many situations, completely altering input lighting is undesirable for portrait retouching applications: one may want to preserve some authenticity in the captured environment. Existing shadow editing methods typically restrict their application to just the facial region and often offer limited lighting control options, such as shadow softening or rotation. In this paper, we introduce COMPOSE: a novel shadow editing pipeline for human portraits, offering precise control over shadow attributes such as shape, intensity, and position, all while preserving the original environmental illumination of the portrait. This level of disentanglement and controllability is obtained thanks to a novel decomposition of the environment map representation into ambient light and an editable gaussian dominant light source. COMPOSE is a four-stage pipeline that consists of light estimation and editing, light diffusion, shadow synthesis, and finally shadow editing. We define facial shadows as the result of a dominant light source, encoded using our novel gaussian environment map representation. Utilizing an OLAT dataset, we have trained models to: (1) predict this light source representation from images, and (2) generate realistic shadows using this representation. We also demonstrate comprehensive and intuitive shadow editing with our pipeline. Through extensive quantitative and qualitative evaluations, we have demonstrated the robust capability of our system in shadow editing.
Abstract:Most novel view synthesis methods such as NeRF are unable to capture the true high dynamic range (HDR) radiance of scenes since they are typically trained on photos captured with standard low dynamic range (LDR) cameras. While the traditional exposure bracketing approach which captures several images at different exposures has recently been adapted to the multi-view case, we find such methods to fall short of capturing the full dynamic range of indoor scenes, which includes very bright light sources. In this paper, we present PanDORA: a PANoramic Dual-Observer Radiance Acquisition system for the casual capture of indoor scenes in high dynamic range. Our proposed system comprises two 360{\deg} cameras rigidly attached to a portable tripod. The cameras simultaneously acquire two 360{\deg} videos: one at a regular exposure and the other at a very fast exposure, allowing a user to simply wave the apparatus casually around the scene in a matter of minutes. The resulting images are fed to a NeRF-based algorithm that reconstructs the scene's full high dynamic range. Compared to HDR baselines from previous work, our approach reconstructs the full HDR radiance of indoor scenes without sacrificing the visual quality while retaining the ease of capture from recent NeRF-like approaches.
Abstract:The three areas of realistic forward rendering, per-pixel inverse rendering, and generative image synthesis may seem like separate and unrelated sub-fields of graphics and vision. However, recent work has demonstrated improved estimation of per-pixel intrinsic channels (albedo, roughness, metallicity) based on a diffusion architecture; we call this the RGB$\rightarrow$X problem. We further show that the reverse problem of synthesizing realistic images given intrinsic channels, X$\rightarrow$RGB, can also be addressed in a diffusion framework. Focusing on the image domain of interior scenes, we introduce an improved diffusion model for RGB$\rightarrow$X, which also estimates lighting, as well as the first diffusion X$\rightarrow$RGB model capable of synthesizing realistic images from (full or partial) intrinsic channels. Our X$\rightarrow$RGB model explores a middle ground between traditional rendering and generative models: we can specify only certain appearance properties that should be followed, and give freedom to the model to hallucinate a plausible version of the rest. This flexibility makes it possible to use a mix of heterogeneous training datasets, which differ in the available channels. We use multiple existing datasets and extend them with our own synthetic and real data, resulting in a model capable of extracting scene properties better than previous work and of generating highly realistic images of interior scenes.
Abstract:We introduce LightIt, a method for explicit illumination control for image generation. Recent generative methods lack lighting control, which is crucial to numerous artistic aspects of image generation such as setting the overall mood or cinematic appearance. To overcome these limitations, we propose to condition the generation on shading and normal maps. We model the lighting with single bounce shading, which includes cast shadows. We first train a shading estimation module to generate a dataset of real-world images and shading pairs. Then, we train a control network using the estimated shading and normals as input. Our method demonstrates high-quality image generation and lighting control in numerous scenes. Additionally, we use our generated dataset to train an identity-preserving relighting model, conditioned on an image and a target shading. Our method is the first that enables the generation of images with controllable, consistent lighting and performs on par with specialized relighting state-of-the-art methods.
Abstract:Progress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
Abstract:Diffusion Handles is a novel approach to enabling 3D object edits on diffusion images. We accomplish these edits using existing pre-trained diffusion models, and 2D image depth estimation, without any fine-tuning or 3D object retrieval. The edited results remain plausible, photo-real, and preserve object identity. Diffusion Handles address a critically missing facet of generative image based creative design, and significantly advance the state-of-the-art in generative image editing. Our key insight is to lift diffusion activations for an object to 3D using a proxy depth, 3D-transform the depth and associated activations, and project them back to image space. The diffusion process applied to the manipulated activations with identity control, produces plausible edited images showing complex 3D occlusion and lighting effects. We evaluate Diffusion Handles: quantitatively, on a large synthetic data benchmark; and qualitatively by a user study, showing our output to be more plausible, and better than prior art at both, 3D editing and identity control. Project Webpage: https://diffusionhandles.github.io/