Abstract:We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait by predicting its appearance under disturbing shadows and highlights. Portrait shadow removal is a highly ill-posed problem where multiple plausible solutions can be found based on a single image. While existing works have solved this problem by predicting the appearance residuals that can propagate local shadow distribution, such methods are often incomplete and lead to unnatural predictions, especially for portraits with hard shadows. We overcome the limitations of existing local propagation methods by formulating the removal problem as a generation task where a diffusion model learns to globally rebuild the human appearance from scratch as a condition of an input portrait image. For robust and natural shadow removal, we propose to train the diffusion model with a compositional repurposing framework: a pre-trained text-guided image generation model is first fine-tuned to harmonize the lighting and color of the foreground with a background scene by using a background harmonization dataset; and then the model is further fine-tuned to generate a shadow-free portrait image via a shadow-paired dataset. To overcome the limitation of losing fine details in the latent diffusion model, we propose a guided-upsampling network to restore the original high-frequency details (wrinkles and dots) from the input image. To enable our compositional training framework, we construct a high-fidelity and large-scale dataset using a lightstage capturing system and synthetic graphics simulation. Our generative framework effectively removes shadows caused by both self and external occlusions while maintaining original lighting distribution and high-frequency details. Our method also demonstrates robustness to diverse subjects captured in real environments.
Abstract:Existing portrait relighting methods struggle with precise control over facial shadows, particularly when faced with challenges such as handling hard shadows from directional light sources or adjusting shadows while remaining in harmony with existing lighting conditions. In many situations, completely altering input lighting is undesirable for portrait retouching applications: one may want to preserve some authenticity in the captured environment. Existing shadow editing methods typically restrict their application to just the facial region and often offer limited lighting control options, such as shadow softening or rotation. In this paper, we introduce COMPOSE: a novel shadow editing pipeline for human portraits, offering precise control over shadow attributes such as shape, intensity, and position, all while preserving the original environmental illumination of the portrait. This level of disentanglement and controllability is obtained thanks to a novel decomposition of the environment map representation into ambient light and an editable gaussian dominant light source. COMPOSE is a four-stage pipeline that consists of light estimation and editing, light diffusion, shadow synthesis, and finally shadow editing. We define facial shadows as the result of a dominant light source, encoded using our novel gaussian environment map representation. Utilizing an OLAT dataset, we have trained models to: (1) predict this light source representation from images, and (2) generate realistic shadows using this representation. We also demonstrate comprehensive and intuitive shadow editing with our pipeline. Through extensive quantitative and qualitative evaluations, we have demonstrated the robust capability of our system in shadow editing.
Abstract:This paper introduces the first text-guided work for generating the sequence of hand-object interaction in 3D. The main challenge arises from the lack of labeled data where existing ground-truth datasets are nowhere near generalizable in interaction type and object category, which inhibits the modeling of diverse 3D hand-object interaction with the correct physical implication (e.g., contacts and semantics) from text prompts. To address this challenge, we propose to decompose the interaction generation task into two subtasks: hand-object contact generation; and hand-object motion generation. For contact generation, a VAE-based network takes as input a text and an object mesh, and generates the probability of contacts between the surfaces of hands and the object during the interaction. The network learns a variety of local geometry structure of diverse objects that is independent of the objects' category, and thus, it is applicable to general objects. For motion generation, a Transformer-based diffusion model utilizes this 3D contact map as a strong prior for generating physically plausible hand-object motion as a function of text prompts by learning from the augmented labeled dataset; where we annotate text labels from many existing 3D hand and object motion data. Finally, we further introduce a hand refiner module that minimizes the distance between the object surface and hand joints to improve the temporal stability of the object-hand contacts and to suppress the penetration artifacts. In the experiments, we demonstrate that our method can generate more realistic and diverse interactions compared to other baseline methods. We also show that our method is applicable to unseen objects. We will release our model and newly labeled data as a strong foundation for future research. Codes and data are available in: https://github.com/JunukCha/Text2HOI.
Abstract:This paper introduces a novel pipeline to reconstruct the geometry of interacting multi-person in clothing on a globally coherent scene space from a single image. The main challenge arises from the occlusion: a part of a human body is not visible from a single view due to the occlusion by others or the self, which introduces missing geometry and physical implausibility (e.g., penetration). We overcome this challenge by utilizing two human priors for complete 3D geometry and surface contacts. For the geometry prior, an encoder learns to regress the image of a person with missing body parts to the latent vectors; a decoder decodes these vectors to produce 3D features of the associated geometry; and an implicit network combines these features with a surface normal map to reconstruct a complete and detailed 3D humans. For the contact prior, we develop an image-space contact detector that outputs a probability distribution of surface contacts between people in 3D. We use these priors to globally refine the body poses, enabling the penetration-free and accurate reconstruction of interacting multi-person in clothing on the scene space. The results demonstrate that our method is complete, globally coherent, and physically plausible compared to existing methods.
Abstract:The appearance of a human in clothing is driven not only by the pose but also by its temporal context, i.e., motion. However, such context has been largely neglected by existing monocular human modeling methods whose neural networks often struggle to learn a video of a person with large dynamics due to the motion ambiguity, i.e., there exist numerous geometric configurations of clothes that are dependent on the context of motion even for the same pose. In this paper, we introduce a method for high-quality modeling of clothed 3D human avatars using a video of a person with dynamic movements. The main challenge comes from the lack of 3D ground truth data of geometry and its temporal correspondences. We address this challenge by introducing a novel compositional human modeling framework that takes advantage of both explicit and implicit human modeling. For explicit modeling, a neural network learns to generate point-wise shape residuals and appearance features of a 3D body model by comparing its 2D rendering results and the original images. This explicit model allows for the reconstruction of discriminative 3D motion features from UV space by encoding their temporal correspondences. For implicit modeling, an implicit network combines the appearance and 3D motion features to decode high-fidelity clothed 3D human avatars with motion-dependent geometry and texture. The experiments show that our method can generate a large variation of secondary motion in a physically plausible way.
Abstract:Portrait harmonization aims to composite a subject into a new background, adjusting its lighting and color to ensure harmony with the background scene. Existing harmonization techniques often only focus on adjusting the global color and brightness of the foreground and ignore crucial illumination cues from the background such as apparent lighting direction, leading to unrealistic compositions. We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image. Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background. Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps, which is a complete representation for scene illumination. Last, to further boost the photorealism of the proposed method, we introduce a novel data simulation pipeline that generates synthetic training pairs from a diverse range of natural images, which are used to refine the model. Our method outperforms existing benchmarks in visual fidelity and lighting coherence, showing superior generalization in real-world testing scenarios, highlighting its versatility and practicality.
Abstract:We introduce a method to generate temporally coherent human animation from a single image, a video, or a random noise. This problem has been formulated as modeling of an auto-regressive generation, i.e., to regress past frames to decode future frames. However, such unidirectional generation is highly prone to motion drifting over time, generating unrealistic human animation with significant artifacts such as appearance distortion. We claim that bidirectional temporal modeling enforces temporal coherence on a generative network by largely suppressing the motion ambiguity of human appearance. To prove our claim, we design a novel human animation framework using a denoising diffusion model: a neural network learns to generate the image of a person by denoising temporal Gaussian noises whose intermediate results are cross-conditioned bidirectionally between consecutive frames. In the experiments, our method demonstrates strong performance compared to existing unidirectional approaches with realistic temporal coherence
Abstract:Appearance of dressed humans undergoes a complex geometric transformation induced not only by the static pose but also by its dynamics, i.e., there exists a number of cloth geometric configurations given a pose depending on the way it has moved. Such appearance modeling conditioned on motion has been largely neglected in existing human rendering methods, resulting in rendering of physically implausible motion. A key challenge of learning the dynamics of the appearance lies in the requirement of a prohibitively large amount of observations. In this paper, we present a compact motion representation by enforcing equivariance -- a representation is expected to be transformed in the way that the pose is transformed. We model an equivariant encoder that can generate the generalizable representation from the spatial and temporal derivatives of the 3D body surface. This learned representation is decoded by a compositional multi-task decoder that renders high fidelity time-varying appearance. Our experiments show that our method can generate a temporally coherent video of dynamic humans for unseen body poses and novel views given a single view video.
Abstract:This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct high fidelity body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net
Abstract:In this paper, we present a method of clothes retargeting; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image. The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e., images of people wearing the different 3D clothing template model at exact same pose. We address this challenge by utilizing large-scale synthetic data generated from physical simulation, allowing us to map 2D dense body pose to 3D clothing deformation. With the simulated data, we propose a semi-supervised learning framework that validates the physical plausibility of the 3D deformation by matching with the prescribed body-to-cloth contact points and clothing silhouette to fit onto the unlabeled real images. A new neural clothes retargeting network (CRNet) is designed to integrate the semi-supervised retargeting task in an end-to-end fashion. In our evaluation, we show that our method can predict the realistic 3D pose and deformation field needed for retargeting clothes models in real-world examples.