Abstract:In the field of computational pathology, deep learning algorithms have made significant progress in tasks such as nuclei segmentation and classification. However, the potential of these advanced methods is limited by the lack of available labeled data. Although image synthesis via recent generative models has been actively explored to address this challenge, existing works have barely addressed label augmentation and are mostly limited to single-class and unconditional label generation. In this paper, we introduce a novel two-stage framework for multi-class nuclei data augmentation using text-conditional diffusion models. In the first stage, we innovate nuclei label synthesis by generating multi-class semantic labels and corresponding instance maps through a joint diffusion model conditioned by text prompts that specify the label structure information. In the second stage, we utilize a semantic and text-conditional latent diffusion model to efficiently generate high-quality pathology images that align with the generated nuclei label images. We demonstrate the effectiveness of our method on large and diverse pathology nuclei datasets, with evaluations including qualitative and quantitative analyses, as well as assessments of downstream tasks.
Abstract:In multi-class histopathology nuclei analysis tasks, the lack of training data becomes a main bottleneck for the performance of learning-based methods. To tackle this challenge, previous methods have utilized generative models to increase data by generating synthetic samples. However, existing methods often overlook the importance of considering the context of biological tissues (e.g., shape, spatial layout, and tissue type) in the synthetic data. Moreover, while generative models have shown superior performance in synthesizing realistic histopathology images, none of the existing methods are capable of producing image-label pairs at the same time. In this paper, we introduce a novel framework for co-synthesizing histopathology nuclei images and paired semantic labels using a context-conditioned joint diffusion model. We propose conditioning of a diffusion model using nucleus centroid layouts with structure-related text prompts to incorporate spatial and structural context information into the generation targets. Moreover, we enhance the granularity of our synthesized semantic labels by generating instance-wise nuclei labels using distance maps synthesized concurrently in conjunction with the images and semantic labels. We demonstrate the effectiveness of our framework in generating high-quality samples on multi-institutional, multi-organ, and multi-modality datasets. Our synthetic data consistently outperforms existing augmentation methods in the downstream tasks of nuclei segmentation and classification.
Abstract:With the emergence of the Segment Anything Model (SAM) as a foundational model for image segmentation, its application has been extensively studied across various domains, including the medical field. However, its potential in the context of histopathology data, specifically in region segmentation, has received relatively limited attention. In this paper, we evaluate SAM's performance in zero-shot and fine-tuned scenarios on histopathology data, with a focus on interactive segmentation. Additionally, we compare SAM with other state-of-the-art interactive models to assess its practical potential and evaluate its generalization capability with domain adaptability. In the experimental results, SAM exhibits a weakness in segmentation performance compared to other models while demonstrating relative strengths in terms of inference time and generalization capability. To improve SAM's limited local refinement ability and to enhance prompt stability while preserving its core strengths, we propose a modification of SAM's decoder. The experimental results suggest that the proposed modification is effective to make SAM useful for interactive histology image segmentation. The code is available at \url{https://github.com/hvcl/SAM_Interactive_Histopathology}
Abstract:Nuclei segmentation and classification is a significant process in pathology image analysis. Deep learning-based approaches have greatly contributed to the higher accuracy of this task. However, those approaches suffer from the imbalanced nuclei data composition, which shows lower classification performance on the rare nuclei class. In this paper, we propose a realistic data synthesis method using a diffusion model. We generate two types of virtual patches to enlarge the training data distribution, which is for balancing the nuclei class variance and for enlarging the chance to look at various nuclei. After that, we use a semantic-label-conditioned diffusion model to generate realistic and high-quality image samples. We demonstrate the efficacy of our method by experiment results on two imbalanced nuclei datasets, improving the state-of-the-art networks. The experimental results suggest that the proposed method improves the classification performance of the rare type nuclei classification, while showing superior segmentation and classification performance in imbalanced pathology nuclei datasets.
Abstract:Current state-of-the-art supervised deep learning-based segmentation approaches have demonstrated superior performance in medical image segmentation tasks. However, such supervised approaches require fully annotated pixel-level ground-truth labels, which are labor-intensive and time-consuming to acquire. Recently, Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation. However, owing to the relatively small size of scribbles, the model is prone to overfit and the results may be biased to the selection of scribbles. In this work, we address this issue by employing a novel multiscale contrastive regularization term for S2L. The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated. To verify the efficacy of our method, we conducted ablation studies on well-known datasets, such as Data Science Bowl 2018 and MoNuSeg. The results show that the proposed multiscale contrastive loss is effective in improving the performance of S2L, which is comparable to that of the supervised learning segmentation method.