Abstract:Current state-of-the-art supervised deep learning-based segmentation approaches have demonstrated superior performance in medical image segmentation tasks. However, such supervised approaches require fully annotated pixel-level ground-truth labels, which are labor-intensive and time-consuming to acquire. Recently, Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation. However, owing to the relatively small size of scribbles, the model is prone to overfit and the results may be biased to the selection of scribbles. In this work, we address this issue by employing a novel multiscale contrastive regularization term for S2L. The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated. To verify the efficacy of our method, we conducted ablation studies on well-known datasets, such as Data Science Bowl 2018 and MoNuSeg. The results show that the proposed multiscale contrastive loss is effective in improving the performance of S2L, which is comparable to that of the supervised learning segmentation method.
Abstract:Although the advances of self-supervised blind denoising are significantly superior to conventional approaches without clean supervision in synthetic noise scenarios, it shows poor quality in real-world images due to spatially correlated noise corruption. Recently, pixel-shuffle downsampling (PD) has been proposed to eliminate the spatial correlation of noise. A study combining a blind spot network (BSN) and asymmetric PD (AP) successfully demonstrated that self-supervised blind denoising is applicable to real-world noisy images. However, PD-based inference may degrade texture details in the testing phase because high-frequency details (e.g., edges) are destroyed in the downsampled images. To avoid such an issue, we propose self-residual learning without the PD process to maintain texture information. We also propose an order-variant PD constraint, noise prior loss, and an efficient inference scheme (progressive random-replacing refinement ($\text{PR}^3$)) to boost overall performance. The results of extensive experiments show that the proposed method outperforms state-of-the-art self-supervised blind denoising approaches, including several supervised learning methods, in terms of PSNR, SSIM, LPIPS, and DISTS in real-world sRGB images.
Abstract:With the advent of advances in self-supervised learning, paired clean-noisy data are no longer required in deep learning-based image denoising. However, existing blind denoising methods still require the assumption with regard to noise characteristics, such as zero-mean noise distribution and pixel-wise noise-signal independence; this hinders wide adaptation of the method in the medical domain. On the other hand, unpaired learning can overcome limitations related to the assumption on noise characteristics, which makes it more feasible for collecting the training data in real-world scenarios. In this paper, we propose a novel image denoising scheme, Interdependent Self-Cooperative Learning (ISCL), that leverages unpaired learning by combining cyclic adversarial learning with self-supervised residual learning. Unlike the existing unpaired image denoising methods relying on matching data distributions in different domains, the two architectures in ISCL, designed for different tasks, complement each other and boost the learning process. To assess the performance of the proposed method, we conducted extensive experiments in various biomedical image degradation scenarios, such as noise caused by physical characteristics of electron microscopy (EM) devices (film and charging noise), and structural noise found in low-dose computer tomography (CT). We demonstrate that the image quality of our method is superior to conventional and current state-of-the-art deep learning-based image denoising methods, including supervised learning.
Abstract:With the advent of recent advances in unsupervised learning, efficient training of a deep network for image denoising without pairs of noisy and clean images has become feasible. However, most current unsupervised denoising methods are built on the assumption of zero-mean noise under the signal-independent condition. This assumption causes blind denoising techniques to suffer brightness shifting problems on images that are greatly corrupted by extreme noise such as salt-and-pepper noise. Moreover, most blind denoising methods require a random masking scheme for training to ensure the invariance of the denoising process. In this paper, we propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking. We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise where a prior knowledge of noise statistics is not readily available. We demonstrate the efficacy of the proposed method by comparing it with state-of-the-art denoising methods using various examples.