Abstract:Loneliness, or the lack of fulfilling relationships, significantly impacts a person's mental and physical well-being and is prevalent worldwide. Previous research suggests that large language models (LLMs) may help mitigate loneliness. However, we argue that the use of widespread LLMs like ChatGPT is more prevalent--and riskier, as they are not designed for this purpose. To explore this, we analysed user interactions with ChatGPT, particularly those outside of its marketed use as task-oriented assistant. In dialogues classified as lonely, users frequently (37%) sought advice or validation, and received good engagement. However, ChatGPT failed in sensitive scenarios, like responding appropriately to suicidal ideation or trauma. We also observed a 35% higher incidence of toxic content, with women being 22 times more likely to be targeted than men. Our findings underscore ethical and legal questions about this technology, and note risks like radicalisation or further isolation. We conclude with recommendations for research and industry to address loneliness.
Abstract:Language is not monolithic. While many benchmarks are used as proxies to systematically estimate Large Language Models' (LLM) performance in real-life tasks, they tend to ignore the nuances of within-language variation and thus fail to model the experience of speakers of minority dialects. Focusing on African American Vernacular English (AAVE), we present the first study on LLMs' fairness and robustness to a dialect in canonical reasoning tasks (algorithm, math, logic, and comprehensive reasoning). We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. The result of this effort is ReDial, a dialectal benchmark comprising $1.2K+$ parallel query pairs in Standardized English and AAVE. We use ReDial to evaluate state-of-the-art LLMs, including GPT-4o/4/3.5-turbo, LLaMA-3.1/3, Mistral, and Phi-3. We find that, compared to Standardized English, almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Furthermore, AAVE queries can degrade performance more substantially than misspelled texts in Standardized English, even when LLMs are more familiar with the AAVE queries. Finally, asking models to rephrase questions in Standardized English does not close the performance gap but generally introduces higher costs. Overall, our findings indicate that LLMs provide unfair service to dialect users in complex reasoning tasks. Code can be found at https://github.com/fangru-lin/redial_dialect_robustness_fairness.git.
Abstract:We perform a critical examination of the scientific methodology behind contemporary large language model (LLM) research. For this we assess over 2,000 research works based on criteria typical of what is considered good research (e.g. presence of statistical tests and reproducibility) and cross-validate it with arguments that are at the centre of controversy (e.g., claims of emergent behaviour, the use of LLMs as evaluators). We find multiple trends, such as declines in claims of emergent behaviour and ethics disclaimers; the rise of LLMs as evaluators in spite of a lack of consensus from the community about their useability; and an increase of claims of LLM reasoning abilities, typically without leveraging human evaluation. This paper underscores the need for more scrutiny and rigour by and from this field to live up to the fundamentals of a responsible scientific method that is ethical, reproducible, systematic, and open to criticism.
Abstract:Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate seven S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when judging holistically the toxicity of a prompt, and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microagressions, bias). We release of this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment.
Abstract:This paper presents a comprehensive survey of the current status and opportunities for Large Language Models (LLMs) in strategic reasoning, a sophisticated form of reasoning that necessitates understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly. Strategic reasoning is distinguished by its focus on the dynamic and uncertain nature of interactions among multi-agents, where comprehending the environment and anticipating the behavior of others is crucial. We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with LLMs, highlighting the burgeoning development in this area and the interdisciplinary approaches enhancing their decision-making performance. It aims to systematize and clarify the scattered literature on this subject, providing a systematic review that underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
Abstract:We show that GPT-4's reasoning and planning capabilities extend to the 1993 first-person shooter Doom. This large language model (LLM) is able to run and play the game with only a few instructions, plus a textual description--generated by the model itself from screenshots--about the state of the game being observed. We find that GPT-4 can play the game to a passable degree: it is able to manipulate doors, combat enemies, and perform pathing. More complex prompting strategies involving multiple model calls provide better results. While further work is required to enable the LLM to play the game as well as its classical, reinforcement learning-based counterparts, we note that GPT-4 required no training, leaning instead on its own reasoning and observational capabilities. We hope our work pushes the boundaries on intelligent, LLM-based agents in video games. We conclude by discussing the ethical implications of our work.
Abstract:Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
Abstract:We evaluate the ability of contemporary large language models (LLMs) to perform argumentative reasoning. We frame our experiments in terms of the argument mining (AM) and argument pair extraction (APE) tasks, and evaluate their ability to perform reasoning at increasing levels of abstraction in the input and output representations (e.g., arbitrary label sets, semantic graphs). We find that, although LLMs are able to match or surpass the state-of-the-art in AM and APE, their argumentative reasoning performance is very dependent on the input and output representation. We also find an "exemplar effect", where too many exemplars increasingly become detrimental for task performance, and about 4-5 being the optimal amount. Neither result extends to chain-of-thought (CoT) prompting: we find the exemplar effect to be nullified, and our results suggest that CoT allows for better performance under ill-conditioned problems. We hope that the work reported contributes to the improvement of argumentative reasoning in LLMs.
Abstract:Large Language Models (LLMs) have demonstrated impressive performance on Natural Language Processing (NLP) tasks, such as Question Answering, Summarization, and Classification. The use of LLMs as evaluators, that can rank or score the output of other models (usually LLMs) has become increasingly popular, due to the limitations of current evaluation techniques including the lack of appropriate benchmarks, metrics, cost, and access to human annotators. While LLMs are capable of handling approximately 100 languages, the majority of languages beyond the top 20 lack systematic evaluation across various tasks, metrics, and benchmarks. This creates an urgent need to scale up multilingual evaluation to ensure a precise understanding of LLM performance across diverse languages. LLM-based evaluators seem like the perfect solution to this problem, as they do not require human annotators, human-created references, or benchmarks and can theoretically be used to evaluate any language covered by the LLM. In this paper, we investigate whether LLM-based evaluators can help scale up multilingual evaluation. Specifically, we calibrate LLM-based evaluation against 20k human judgments of five metrics across three text-generation tasks in eight languages. Our findings indicate that LLM-based evaluators may exhibit bias towards higher scores and should be used with caution and should always be calibrated with a dataset of native speaker judgments, particularly in low-resource and non-Latin script languages.
Abstract:We present an evaluation of text simplification (TS) in Spanish for a production system, by means of two corpora focused in both complex-sentence and complex-word identification. We compare the most prevalent Spanish-specific readability scores with neural networks, and show that the latter are consistently better at predicting user preferences regarding TS. As part of our analysis, we find that multilingual models underperform against equivalent Spanish-only models on the same task, yet all models focus too often on spurious statistical features, such as sentence length. We release the corpora in our evaluation to the broader community with the hopes of pushing forward the state-of-the-art in Spanish natural language processing.