Abstract:As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs' knowledge about values, rather than valid assessments of LLMs' behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs' underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values.
Abstract:The emergence of large language models (LLMs) has sparked the possibility of about Artificial Superintelligence (ASI), a hypothetical AI system surpassing human intelligence. However, existing alignment paradigms struggle to guide such advanced AI systems. Superalignment, the alignment of AI systems with human values and safety requirements at superhuman levels of capability aims to addresses two primary goals -- scalability in supervision to provide high-quality guidance signals and robust governance to ensure alignment with human values. In this survey, we examine scalable oversight methods and potential solutions for superalignment. Specifically, we explore the concept of ASI, the challenges it poses, and the limitations of current alignment paradigms in addressing the superalignment problem. Then we review scalable oversight methods for superalignment. Finally, we discuss the key challenges and propose pathways for the safe and continual improvement of ASI systems. By comprehensively reviewing the current literature, our goal is provide a systematical introduction of existing methods, analyze their strengths and limitations, and discuss potential future directions.
Abstract:Recent advancements in diffusion models trained on large-scale data have enabled the generation of indistinguishable human-level images, yet they often produce harmful content misaligned with human values, e.g., social bias, and offensive content. Despite extensive research on Large Language Models (LLMs), the challenge of Text-to-Image (T2I) model alignment remains largely unexplored. Addressing this problem, we propose LiVO (Lightweight Value Optimization), a novel lightweight method for aligning T2I models with human values. LiVO only optimizes a plug-and-play value encoder to integrate a specified value principle with the input prompt, allowing the control of generated images over both semantics and values. Specifically, we design a diffusion model-tailored preference optimization loss, which theoretically approximates the Bradley-Terry model used in LLM alignment but provides a more flexible trade-off between image quality and value conformity. To optimize the value encoder, we also develop a framework to automatically construct a text-image preference dataset of 86k (prompt, aligned image, violating image, value principle) samples. Without updating most model parameters and through adaptive value selection from the input prompt, LiVO significantly reduces harmful outputs and achieves faster convergence, surpassing several strong baselines and taking an initial step towards ethically aligned T2I models.
Abstract:The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing LLMs' values can help expose their misalignment, but relies on reference-free evaluators, e.g., fine-tuned LLMs or close-source ones like GPT-4, to identify values reflected in generated responses. Nevertheless, these evaluators face two challenges in open-ended value evaluation: they should align with changing human value definitions with minimal annotation, against their own bias (adaptability), and detect varying value expressions and scenarios robustly (generalizability). To handle these challenges, we introduce CLAVE, a novel framework which integrates two complementary LLMs, a large one to extract high-level value concepts from a few human labels, leveraging its extensive knowledge and generalizability, and a smaller one fine-tuned on such concepts to better align with human value understanding. This dual-model approach enables calibration with any value systems using <100 human-labeled samples per value type. Then we present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the capabilities of 12+ popular LLM evaluators and analyze their strengths and weaknesses. Our findings reveal that combining fine-tuned small models and prompt-based large ones serves as a superior balance in value evaluation.
Abstract:Warning: this paper contains model outputs exhibiting unethical information. Large Language Models (LLMs) have achieved significant breakthroughs, but their generated unethical content poses potential risks. Measuring value alignment of LLMs becomes crucial for their regulation and responsible deployment. Numerous datasets have been constructed to assess social bias, toxicity, and ethics in LLMs, but they suffer from evaluation chronoeffect, that is, as models rapidly evolve, existing data becomes leaked or undemanding, overestimating ever-developing LLMs. To tackle this problem, we propose GETA, a novel generative evolving testing approach that dynamically probes the underlying moral baselines of LLMs. Distinct from previous adaptive testing methods that rely on static datasets with limited difficulty, GETA incorporates an iteratively-updated item generator which infers each LLM's moral boundaries and generates difficulty-tailored testing items, accurately reflecting the true alignment extent. This process theoretically learns a joint distribution of item and model response, with item difficulty and value conformity as latent variables, where the generator co-evolves with the LLM, addressing chronoeffect. We evaluate various popular LLMs with diverse capabilities and demonstrate that GETA can create difficulty-matching testing items and more accurately assess LLMs' values, better consistent with their performance on unseen OOD and i.i.d. items, laying the groundwork for future evaluation paradigms.
Abstract:Fact verification tasks aim to identify the integrity of textual contents according to the truthful corpus. Existing fact verification models usually build a fully connected reasoning graph, which regards claim-evidence pairs as nodes and connects them with edges. They employ the graph to propagate the semantics of the nodes. Nevertheless, the noisy nodes usually propagate their semantics via the edges of the reasoning graph, which misleads the semantic representations of other nodes and amplifies the noise signals. To mitigate the propagation of noisy semantic information, we introduce a Confidential Graph Attention Network (CO-GAT), which proposes a node masking mechanism for modeling the nodes. Specifically, CO-GAT calculates the node confidence score by estimating the relevance between the claim and evidence pieces. Then, the node masking mechanism uses the node confidence scores to control the noise information flow from the vanilla node to the other graph nodes. CO-GAT achieves a 73.59% FEVER score on the FEVER dataset and shows the generalization ability by broadening the effectiveness to the science-specific domain.
Abstract:Recent advancements in Large Language Models (LLMs) have revolutionized the AI field but also pose potential safety and ethical risks. Deciphering LLMs' embedded values becomes crucial for assessing and mitigating their risks. Despite extensive investigation into LLMs' values, previous studies heavily rely on human-oriented value systems in social sciences. Then, a natural question arises: Do LLMs possess unique values beyond those of humans? Delving into it, this work proposes a novel framework, ValueLex, to reconstruct LLMs' unique value system from scratch, leveraging psychological methodologies from human personality/value research. Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs, synthesizing a taxonomy that culminates in a comprehensive value framework via factor analysis and semantic clustering. We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system. Based on this system, we further develop tailored projective tests to evaluate and analyze the value inclinations of LLMs across different model sizes, training methods, and data sources. Our framework fosters an interdisciplinary paradigm of understanding LLMs, paving the way for future AI alignment and regulation.
Abstract:Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
Abstract:Large language models (LLMs) have revolutionized the role of AI, yet also pose potential risks of propagating unethical content. Alignment technologies have been introduced to steer LLMs towards human preference, gaining increasing attention. Despite notable breakthroughs in this direction, existing methods heavily rely on high-quality positive-negative training pairs, suffering from noisy labels and the marginal distinction between preferred and dispreferred response data. Given recent LLMs' proficiency in generating helpful responses, this work pivots towards a new research focus: achieving alignment using solely human-annotated negative samples, preserving helpfulness while reducing harmfulness. For this purpose, we propose Distributional Dispreference Optimization (D$^2$O), which maximizes the discrepancy between the generated responses and the dispreferred ones to effectively eschew harmful information. We theoretically demonstrate that D$^2$O is equivalent to learning a distributional instead of instance-level preference model reflecting human dispreference against the distribution of negative responses. Besides, D$^2$O integrates an implicit Jeffrey Divergence regularization to balance the exploitation and exploration of reference policies and converges to a non-negative one during training. Extensive experiments demonstrate that our method achieves comparable generation quality and surpasses the latest baselines in producing less harmful and more informative responses with better training stability and faster convergence.
Abstract:While achieving remarkable progress in a broad range of tasks, large language models (LLMs) remain significantly limited in properly using massive external tools. Existing in-context learning approaches simply format tools into a list of plain text descriptions and input them to LLMs, from which, LLMs generate a sequence of tool calls to solve problems step by step. Such a paradigm ignores the intrinsic dependency between tools and offloads all reasoning loads to LLMs, making them restricted to a limited number of specifically designed tools. It thus remains challenging for LLMs to operate on a library of massive tools, casting a great limitation when confronted with real-world scenarios. This paper proposes ToolNet, a plug-and-play framework that scales up the number of tools to thousands with a moderate increase in token consumption. ToolNet organizes tools into a directed graph. Each node represents a tool, and weighted edges denote tool transition. Starting from an initial tool node, an LLM navigates in the graph by iteratively choosing the next one from its successors until the task is resolved. Extensive experiments show that ToolNet can achieve impressive results in challenging multi-hop tool learning datasets and is resilient to tool failures.