Abstract:Numerous recent works target to extend effective context length for language models and various methods, tasks and benchmarks exist to measure model's effective memorization length. However, through thorough investigations, we find limitations for currently existing evaluations on model's memorization capability. We provide an extensive survey for limitations in this work and propose a new method called forgetting curve to measure the memorization capability of long-context models. We show that forgetting curve has the advantage of being robust to the tested corpus and the experimental settings, of not relying on prompts and can be applied to any model size. We apply our forgetting curve to a large variety of models involving both transformer and RNN/SSM based architectures. Our measurement provides empirical evidence for the effectiveness of transformer extension techniques while raises questions for the effective length of RNN/SSM based models. We also examine the difference between our measurement and existing benchmarks as well as popular metrics for various models. Our code and results can be found at https://github.com/1azybug/ForgettingCurve.
Abstract:Compressing Transformer inputs into compressd tokens allows running LLMs with improved speed and cost efficiency. Based on the compression method ICAE, we carefully examine the position identifier choices for compressed tokens and also propose a new compression loss. We demonstrate empirically that our proposed methods achieve significantly higher compression ratios (15x compared to 4x for ICAE), while being able to attain comparable reconstruction performance.
Abstract:Imposing constraints on machine translation systems presents a challenging issue because these systems are not trained to make use of constraints in generating adequate, fluent translations. In this paper, we leverage the capabilities of large language models (LLMs) for constrained translation, given that LLMs can easily adapt to this task by taking translation instructions and constraints as prompts. However, LLMs cannot always guarantee the adequacy of translation, and, in some cases, ignore the given constraints. This is in part because LLMs might be overly confident in their predictions, overriding the influence of the constraints. To overcome this overiding behaviour, we propose to add a revision process that encourages LLMs to correct the outputs by prompting them about the constraints that have not yet been met. We evaluate our approach on four constrained translation tasks, encompassing both lexical and structural constraints in multiple constraint domains. Experiments show 15\% improvement in constraint-based translation accuracy over standard LLMs and the approach also significantly outperforms neural machine translation (NMT) state-of-the-art methods.