Abstract:Recent progress in knowledge graph completion (KGC) has focused on text-based approaches to address the challenges of large-scale knowledge graphs (KGs). Despite their achievements, these methods often overlook the intricate interconnections between entities, a key aspect of the underlying topological structure of a KG. Stochastic blockmodels (SBMs), particularly the latent feature relational model (LFRM), offer robust probabilistic frameworks that can dynamically capture latent community structures and enhance link prediction. In this paper, we introduce a novel framework of sparse latent feature models for KGC, optimized through a deep variational autoencoder (VAE). Our approach not only effectively completes missing triples but also provides clear interpretability of the latent structures, leveraging textual information. Comprehensive experiments on the WN18RR, FB15k-237, and Wikidata5M datasets show that our method significantly improves performance by revealing latent communities and producing interpretable representations.
Abstract:Knowledge graph completion is a task that revolves around filling in missing triples based on the information available in a knowledge graph. Among the current studies, text-based methods complete the task by utilizing textual descriptions of triples. However, this modeling approach may encounter limitations, particularly when the description fails to accurately and adequately express the intended meaning. To overcome these challenges, we propose the augmentation of data through two additional mechanisms. Firstly, we employ ChatGPT as an external knowledge base to generate coherent descriptions to bridge the semantic gap between the queries and answers. Secondly, we leverage inverse relations to create a symmetric graph, thereby creating extra labeling and providing supplementary information for link prediction. This approach offers additional insights into the relationships between entities. Through these efforts, we have observed significant improvements in knowledge graph completion, as these mechanisms enhance the richness and diversity of the available data, leading to more accurate results.
Abstract:Knowledge graphs (KGs), as structured representations of real world facts, are intelligent databases incorporating human knowledge that can help machine imitate the way of human problem solving. However, due to the nature of rapid iteration as well as incompleteness of data, KGs are usually huge and there are inevitably missing facts in KGs. Link prediction for knowledge graphs is the task aiming to complete missing facts by reasoning based on the existing knowledge. Two main streams of research are widely studied: one learns low-dimensional embeddings for entities and relations that can capture latent patterns, and the other gains good interpretability by mining logical rules. Unfortunately, previous studies rarely pay attention to heterogeneous KGs. In this paper, we propose DegreEmbed, a model that combines embedding-based learning and logic rule mining for inferring on KGs. Specifically, we study the problem of predicting missing links in heterogeneous KGs that involve entities and relations of various types from the perspective of the degrees of nodes. Experimentally, we demonstrate that our DegreEmbed model outperforms the state-of-the-art methods on real world datasets. Meanwhile, the rules mined by our model are of high quality and interpretability.
Abstract:Large-scale knowledge graphs (KGs) provide structured representations of human knowledge. However, as it is impossible to contain all knowledge, KGs are usually incomplete. Reasoning based on existing facts paves a way to discover missing facts. In this paper, we study the problem of learning logic rules for reasoning on knowledge graphs for completing missing factual triplets. Learning logic rules equips a model with strong interpretability as well as the ability to generalize to similar tasks. We propose a model called MPLR that improves the existing models to fully use training data and multi-target scenarios are considered. In addition, considering the deficiency in evaluating the performance of models and the quality of mined rules, we further propose two novel indicators to help with the problem. Experimental results empirically demonstrate that our MPLR model outperforms state-of-the-art methods on five benchmark datasets. The results also prove the effectiveness of the indicators.