Abstract:The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, LiDAR inertial odometry becomes increasingly prevalent in robotics and autonomous driving. However, many current SLAM systems lack sufficient adaptability to various scenarios. Challenges include decreased point cloud accuracy with longer frame intervals under the constant velocity assumption, coupling of erroneous IMU information when IMU saturation occurs, and decreased localization accuracy due to the use of fixed-resolution maps during indoor-outdoor scene transitions. To address these issues, we propose a loosely coupled adaptive LiDAR-Inertial-Odometry named \textbf{Adaptive-LIO}, which incorporates adaptive segmentation to enhance mapping accuracy, adapts motion modality through IMU saturation and fault detection, and adjusts map resolution adaptively using multi-resolution voxel maps based on the distance from the LiDAR center. Our proposed method has been tested in various challenging scenarios, demonstrating the effectiveness of the improvements we introduce. The code is open-source on GitHub: \href{https://github.com/chengwei0427/adaptive_lio}{Adaptive-LIO}.
Abstract:Multi-agent reinforcement learning (MARL) faces challenges in coordinating agents due to complex interdependencies within multi-agent systems. Most MARL algorithms use the simultaneous decision-making paradigm but ignore the action-level dependencies among agents, which reduces coordination efficiency. In contrast, the sequential decision-making paradigm provides finer-grained supervision for agent decision order, presenting the potential for handling dependencies via better decision order management. However, determining the optimal decision order remains a challenge. In this paper, we introduce Action Generation with Plackett-Luce Sampling (AGPS), a novel mechanism for agent decision order optimization. We model the order determination task as a Plackett-Luce sampling process to address issues such as ranking instability and vanishing gradient during the network training process. AGPS realizes credit-based decision order determination by establishing a bridge between the significance of agents' local observations and their decision credits, thus facilitating order optimization and dependency management. Integrating AGPS with the Multi-Agent Transformer, we propose the Prioritized Multi-Agent Transformer (PMAT), a sequential decision-making MARL algorithm with decision order optimization. Experiments on benchmarks including StarCraft II Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo show that PMAT outperforms state-of-the-art algorithms, greatly enhancing coordination efficiency.
Abstract:Point cloud completion aims to reconstruct complete 3D shapes from partial 3D point clouds. With advancements in deep learning techniques, various methods for point cloud completion have been developed. Despite achieving encouraging results, a significant issue remains: these methods often overlook the variability in point clouds sampled from a single 3D object surface. This variability can lead to ambiguity and hinder the achievement of more precise completion results. Therefore, in this study, we introduce a novel point cloud completion network, namely Dual-Codebook Point Completion Network (DC-PCN), following an encder-decoder pipeline. The primary objective of DC-PCN is to formulate a singular representation of sampled point clouds originating from the same 3D surface. DC-PCN introduces a dual-codebook design to quantize point-cloud representations from a multilevel perspective. It consists of an encoder-codebook and a decoder-codebook, designed to capture distinct point cloud patterns at shallow and deep levels. Additionally, to enhance the information flow between these two codebooks, we devise an information exchange mechanism. This approach ensures that crucial features and patterns from both shallow and deep levels are effectively utilized for completion. Extensive experiments on the PCN, ShapeNet\_Part, and ShapeNet34 datasets demonstrate the state-of-the-art performance of our method.
Abstract:Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.
Abstract:Recently, extended short-term precipitation nowcasting struggles with decreasing precision because of insufficient consideration of meteorological knowledge, such as weather fronts which significantly influence precipitation intensity, duration, and spatial distribution. Therefore, in this paper, we present DuoCast, a novel dual-probabilistic meteorology-aware model designed to address both broad weather evolution and micro-scale fluctuations using two diffusion models, PrecipFlow and MicroDynamic, respectively. Our PrecipFlow model captures evolution trends through an Extreme Precipitation-Aware Encoder (EPA-Encoder), which includes AirConvolution and FrontAttention blocks to process two levels of precipitation data: general and extreme. The output conditions a UNet-based diffusion to produce prediction maps enriched with weather front information. The MicroDynamic model further refines the results to capture micro-scale variability. Extensive experiments on four public benchmarks demonstrate the effectiveness of our DuoCast, achieving superior performance over state-of-the-art methods. Our code is available at https://github.com/ph-w2000/DuoCast.
Abstract:Infrared and visible image fusion aims to utilize the complementary information from two modalities to generate fused images with prominent targets and rich texture details. Most existing algorithms only perform pixel-level or feature-level fusion from different modalities in the spatial domain. They usually overlook the information in the frequency domain, and some of them suffer from inefficiency due to excessively complex structures. To tackle these challenges, this paper proposes an efficient Spatial-Frequency Domain Fusion (SFDFusion) network for infrared and visible image fusion. First, we propose a Dual-Modality Refinement Module (DMRM) to extract complementary information. This module extracts useful information from both the infrared and visible modalities in the spatial domain and enhances fine-grained spatial details. Next, to introduce frequency domain information, we construct a Frequency Domain Fusion Module (FDFM) that transforms the spatial domain to the frequency domain through Fast Fourier Transform (FFT) and then integrates frequency domain information. Additionally, we design a frequency domain fusion loss to provide guidance for the fusion process. Extensive experiments on public datasets demonstrate that our method produces fused images with significant advantages in various fusion metrics and visual effects. Furthermore, our method demonstrates high efficiency in image fusion and good performance on downstream detection tasks, thereby satisfying the real-time demands of advanced visual tasks.
Abstract:Masked point modeling methods have recently achieved great success in self-supervised learning for point cloud data. However, these methods are sensitive to rotations and often exhibit sharp performance drops when encountering rotational variations. In this paper, we propose a novel Rotation-Invariant Masked AutoEncoders (RI-MAE) to address two major challenges: 1) achieving rotation-invariant latent representations, and 2) facilitating self-supervised reconstruction in a rotation-invariant manner. For the first challenge, we introduce RI-Transformer, which features disentangled geometry content, rotation-invariant relative orientation and position embedding mechanisms for constructing rotation-invariant point cloud latent space. For the second challenge, a novel dual-branch student-teacher architecture is devised. It enables the self-supervised learning via the reconstruction of masked patches within the learned rotation-invariant latent space. Each branch is based on an RI-Transformer, and they are connected with an additional RI-Transformer predictor. The teacher encodes all point patches, while the student solely encodes unmasked ones. Finally, the predictor predicts the latent features of the masked patches using the output latent embeddings from the student, supervised by the outputs from the teacher. Extensive experiments demonstrate that our method is robust to rotations, achieving the state-of-the-art performance on various downstream tasks.
Abstract:Extreme Multimodal Summarization with Multimodal Output (XMSMO) becomes an attractive summarization approach by integrating various types of information to create extremely concise yet informative summaries for individual modalities. Existing methods overlook the issue that multimodal data often contains more topic irrelevant information, which can mislead the model into producing inaccurate summaries especially for extremely short ones. In this paper, we propose SITransformer, a Shared Information-guided Transformer for extreme multimodal summarization. It has a shared information guided pipeline which involves a cross-modal shared information extractor and a cross-modal interaction module. The extractor formulates semantically shared salient information from different modalities by devising a novel filtering process consisting of a differentiable top-k selector and a shared-information guided gating unit. As a result, the common, salient, and relevant contents across modalities are identified. Next, a transformer with cross-modal attentions is developed for intra- and inter-modality learning with the shared information guidance to produce the extreme summary. Comprehensive experiments demonstrate that SITransformer significantly enhances the summarization quality for both video and text summaries for XMSMO. Our code will be publicly available at https://github.com/SichengLeoLiu/MMAsia24-XMSMO.
Abstract:Knee osteoarthritis (KOA), a common form of arthritis that causes physical disability, has become increasingly prevalent in society. Employing computer-aided techniques to automatically assess the severity and progression of KOA can greatly benefit KOA treatment and disease management. Particularly, the advancement of X-ray technology in KOA demonstrates its potential for this purpose. Yet, existing X-ray prognosis research generally yields a singular progression severity grade, overlooking the potential visual changes for understanding and explaining the progression outcome. Therefore, in this study, a novel generative model is proposed, namely Identity-Consistent Radiographic Diffusion Network (IC-RDN), for multifaceted KOA prognosis encompassing a predicted future knee X-ray scan conditioned on the baseline scan. Specifically, an identity prior module for the diffusion and a downstream generation-guided progression prediction module are introduced. Compared to conventional image-to-image generative models, identity priors regularize and guide the diffusion to focus more on the clinical nuances of the prognosis based on a contrastive learning strategy. The progression prediction module utilizes both forecasted and baseline knee scans, and a more comprehensive formulation of KOA severity progression grading is expected. Extensive experiments on a widely used public dataset, OAI, demonstrate the effectiveness of the proposed method.
Abstract:Radio frequency (RF) signals have been proved to be flexible for human silhouette segmentation (HSS) under complex environments. Existing studies are mainly based on a one-shot approach, which lacks a coherent projection ability from the RF domain. Additionally, the spatio-temporal patterns have not been fully explored for human motion dynamics in HSS. Therefore, we propose a two-stage Sequential Diffusion Model (SDM) to progressively synthesize high-quality segmentation jointly with the considerations on motion dynamics. Cross-view transformation blocks are devised to guide the diffusion model in a multi-scale manner for comprehensively characterizing human related patterns in an individual frame such as directional projection from signal planes. Moreover, spatio-temporal blocks are devised to fine-tune the frame-level model to incorporate spatio-temporal contexts and motion dynamics, enhancing the consistency of the segmentation maps. Comprehensive experiments on a public benchmark -- HIBER demonstrate the state-of-the-art performance of our method with an IoU 0.732. Our code is available at https://github.com/ph-w2000/SDM.