Abstract:LiDAR odometry is a pivotal technology in the fields of autonomous driving and autonomous mobile robotics. However, most of the current works focus on nonlinear optimization methods, and still existing many challenges in using the traditional Iterative Extended Kalman Filter (IEKF) framework to tackle the problem: IEKF only iterates over the observation equation, relying on a rough estimate of the initial state, which is insufficient to fully eliminate motion distortion in the input point cloud; the system process noise is difficult to be determined during state estimation of the complex motions; and the varying motion models across different sensor carriers. To address these issues, we propose the Dual-Iteration Extended Kalman Filter (I2EKF) and the LiDAR odometry based on I2EKF (I2EKF-LO). This approach not only iterates over the observation equation but also leverages state updates to iteratively mitigate motion distortion in LiDAR point clouds. Moreover, it dynamically adjusts process noise based on the confidence level of prior predictions during state estimation and establishes motion models for different sensor carriers to achieve accurate and efficient state estimation. Comprehensive experiments demonstrate that I2EKF-LO achieves outstanding levels of accuracy and computational efficiency in the realm of LiDAR odometry. Additionally, to foster community development, our code is open-sourced.https://github.com/YWL0720/I2EKF-LO.
Abstract:Existing LiDAR-inertial state estimation methods treats the state at the beginning of current sweep as equal to the state at the end of previous sweep. However, if the previous state is inaccurate, the current state cannot satisfy the constraints from LiDAR and IMU consistently, and in turn yields local inconsistency in the estimated states (e.g., zigzag trajectory or high-frequency oscillating velocity). To address this issue, this paper proposes a semi-elastic LiDAR-inertial state estimation method. Our method provides the state sufficient flexibility to be optimized to the correct value, thus preferably ensuring improved accuracy, consistency, and robustness of state estimation. We integrate the proposed method into an optimization-based LiDARinertial odometry (LIO) framework. Experimental results on four public datasets demonstrate that our method outperforms existing state-of-the-art LiDAR-inertial odometry systems in terms of accuracy. In addition, our semi-elastic LiDAR-inertial state estimation method can better enhance the accuracy, consistency, and robustness. We have released the source code of this work to contribute to advancements in LiDAR-inertial state estimation and benefit the broader research community.