Abstract:Knee osteoarthritis (KOA), a common form of arthritis that causes physical disability, has become increasingly prevalent in society. Employing computer-aided techniques to automatically assess the severity and progression of KOA can greatly benefit KOA treatment and disease management. Particularly, the advancement of X-ray technology in KOA demonstrates its potential for this purpose. Yet, existing X-ray prognosis research generally yields a singular progression severity grade, overlooking the potential visual changes for understanding and explaining the progression outcome. Therefore, in this study, a novel generative model is proposed, namely Identity-Consistent Radiographic Diffusion Network (IC-RDN), for multifaceted KOA prognosis encompassing a predicted future knee X-ray scan conditioned on the baseline scan. Specifically, an identity prior module for the diffusion and a downstream generation-guided progression prediction module are introduced. Compared to conventional image-to-image generative models, identity priors regularize and guide the diffusion to focus more on the clinical nuances of the prognosis based on a contrastive learning strategy. The progression prediction module utilizes both forecasted and baseline knee scans, and a more comprehensive formulation of KOA severity progression grading is expected. Extensive experiments on a widely used public dataset, OAI, demonstrate the effectiveness of the proposed method.
Abstract:Radio frequency (RF) signals have been proved to be flexible for human silhouette segmentation (HSS) under complex environments. Existing studies are mainly based on a one-shot approach, which lacks a coherent projection ability from the RF domain. Additionally, the spatio-temporal patterns have not been fully explored for human motion dynamics in HSS. Therefore, we propose a two-stage Sequential Diffusion Model (SDM) to progressively synthesize high-quality segmentation jointly with the considerations on motion dynamics. Cross-view transformation blocks are devised to guide the diffusion model in a multi-scale manner for comprehensively characterizing human related patterns in an individual frame such as directional projection from signal planes. Moreover, spatio-temporal blocks are devised to fine-tune the frame-level model to incorporate spatio-temporal contexts and motion dynamics, enhancing the consistency of the segmentation maps. Comprehensive experiments on a public benchmark -- HIBER demonstrate the state-of-the-art performance of our method with an IoU 0.732. Our code is available at https://github.com/ph-w2000/SDM.
Abstract:Universal lesion detection has great value for clinical practice as it aims to detect various types of lesions in multiple organs on medical images. Deep learning methods have shown promising results, but demanding large volumes of annotated data for training. However, annotating medical images is costly and requires specialized knowledge. The diverse forms and contrasts of objects in medical images make fully annotation even more challenging, resulting in incomplete annotations. Directly training ULD detectors on such datasets can yield suboptimal results. Pseudo-label-based methods examine the training data and mine unlabelled objects for retraining, which have shown to be effective to tackle this issue. Presently, top-performing methods rely on a dynamic label-mining mechanism, operating at the mini-batch level. However, the model's performance varies at different iterations, leading to inconsistencies in the quality of the mined labels and limits their performance enhancement. Inspired by the observation that deep models learn concepts with increasing complexity, we introduce an innovative exploratory training to assess the reliability of mined lesions over time. Specifically, we introduce a teacher-student detection model as basis, where the teacher's predictions are combined with incomplete annotations to train the student. Additionally, we design a prediction bank to record high-confidence predictions. Each sample is trained several times, allowing us to get a sequence of records for each sample. If a prediction consistently appears in the record sequence, it is likely to be a true object, otherwise it may just a noise. This serves as a crucial criterion for selecting reliable mined lesions for retraining. Our experimental results substantiate that the proposed framework surpasses state-of-the-art methods on two medical image datasets, demonstrating its superior performance.