Abstract:Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.
Abstract:Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame. Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios. However, these methods still face challenges such as poor noise resistance and frequent ID switches. In this research, we propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on perturbed bounding boxes. This progressive denoising strategy significantly improves the model's noise resistance. During the training phase, paired object boxes within two adjacent frames are diffused from ground-truth boxes to a random distribution, and then the model learns to detect and track by reversing this process. In inference, the model refines randomly generated boxes into detection and tracking results through minimal denoising steps. ConsistencyTrack also introduces an innovative target association strategy to address target occlusion. Experiments on the MOT17 and DanceTrack datasets demonstrate that ConsistencyTrack outperforms other compared methods, especially better than DiffusionTrack in inference speed and other performance metrics. Our code is available at https://github.com/Tankowa/ConsistencyTrack.
Abstract:Recent advances in Multi-Object Tracking (MOT) have achieved remarkable success in short-term association within the decoupled tracking-by-detection online paradigm. However, long-term tracking still remains a challenging task. Although graph-based approaches can address this issue by modeling trajectories as a graph in the decoupled manner, their non-online nature poses obstacles for real-time applications. In this paper, we demonstrate that the trajectory graph is a directed acyclic graph, which can be represented by an object sequence arranged by frame and a binary adjacency matrix. It is a coincidence that the binary matrix matches the attention mask in the Transformer, and the object sequence serves exactly as a natural input sequence. Intuitively, we propose that a pure Transformer can naturally unify short- and long-term associations in a decoupled and online manner. Our experiments show that a classic Transformer architecture naturally suits the association problem and achieves a strong baseline compared to existing foundational methods across four datasets: DanceTrack, SportsMOT, MOT17, and MOT20, as well as superior generalizability in domain shift. Moreover, the decoupled property also enables efficient training and inference. This work pioneers a promising Transformer-based approach for the MOT task, and provides code to facilitate further research. https://github.com/chongweiliu/PuTR
Abstract:The purpose of semantic location prediction is to extract relevant semantic location information from multimodal social media posts, offering a more contextual understanding of daily activities compared to GPS coordinates. However, this task becomes challenging due to the presence of noise and irrelevant information in "text-image" pairs. Existing methods suffer from insufficient feature representations and fail to consider the comprehensive integration of similarity at different granularities, making it difficult to filter out noise and irrelevant information. To address these challenges, we propose a Similarity-Guided Multimodal Fusion Transformer (SG-MFT) for predicting social users' semantic locations. First, we utilize a pre-trained large-scale vision-language model to extract high-quality feature representations from social media posts. Then, we introduce a Similarity-Guided Interaction Module (SIM) to alleviate modality heterogeneity and noise interference by incorporating coarse-grained and fine-grained similarity guidance for modality interactions. Specifically, we propose a novel similarity-aware feature interpolation attention mechanism at the coarse level, leveraging modality-wise similarity to mitigate heterogeneity and reduce noise within each modality. Meanwhile, we employ a similarity-aware feed-forward block at the fine level, utilizing element-wise similarity to further mitigate the impact of modality heterogeneity. Building upon pre-processed features with minimal noise and modal interference, we propose a Similarity-aware Feature Fusion Module (SFM) to fuse two modalities with cross-attention mechanism. Comprehensive experimental results demonstrate the superior performance of our proposed method in handling modality imbalance while maintaining efficient fusion effectiveness.
Abstract:Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on the perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a "one-step denoising" mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics. Our code is available at https://github.com/Tankowa/ConsistencyDet.
Abstract:Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a ``one-step denoising'' mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into the definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics.
Abstract:Generative Adversarial Networks (GANs) have become a ubiquitous technology for data generation, with their prowess in image generation being well-established. However, their application in generating tabular data has been less than ideal. Furthermore, attempting to incorporate differential privacy technology into these frameworks has often resulted in a degradation of data utility. To tackle these challenges, this paper introduces DP-SACTGAN, a novel Conditional Generative Adversarial Network (CGAN) framework for differentially private tabular data generation, aiming to surmount these obstacles. Experimental findings demonstrate that DP-SACTGAN not only accurately models the distribution of the original data but also effectively satisfies the requirements of differential privacy.
Abstract:In this work, we present a new visual prompting method called 3DAxiesPrompts (3DAP) to unleash the capabilities of GPT-4V in performing 3D spatial tasks. Our investigation reveals that while GPT-4V exhibits proficiency in discerning the position and interrelations of 2D entities through current visual prompting techniques, its abilities in handling 3D spatial tasks have yet to be explored. In our approach, we create a 3D coordinate system tailored to 3D imagery, complete with annotated scale information. By presenting images infused with the 3DAP visual prompt as inputs, we empower GPT-4V to ascertain the spatial positioning information of the given 3D target image with a high degree of precision. Through experiments, We identified three tasks that could be stably completed using the 3DAP method, namely, 2D to 3D Point Reconstruction, 2D to 3D point matching, and 3D Object Detection. We perform experiments on our proposed dataset 3DAP-Data, the results from these experiments validate the efficacy of 3DAP-enhanced GPT-4V inputs, marking a significant stride in 3D spatial task execution.
Abstract:In this work, we build a modular-designed codebase, formulate strong training recipes, design an error diagnosis toolbox, and discuss current methods for image-based 3D object detection. In particular, different from other highly mature tasks, e.g., 2D object detection, the community of image-based 3D object detection is still evolving, where methods often adopt different training recipes and tricks resulting in unfair evaluations and comparisons. What is worse, these tricks may overwhelm their proposed designs in performance, even leading to wrong conclusions. To address this issue, we build a module-designed codebase and formulate unified training standards for the community. Furthermore, we also design an error diagnosis toolbox to measure the detailed characterization of detection models. Using these tools, we analyze current methods in-depth under varying settings and provide discussions for some open questions, e.g., discrepancies in conclusions on KITTI-3D and nuScenes datasets, which have led to different dominant methods for these datasets. We hope that this work will facilitate future research in image-based 3D object detection. Our codes will be released at \url{https://github.com/OpenGVLab/3dodi}
Abstract:The COVID-19 pandemic has affected countries across the world, demanding drastic public health policies to mitigate the spread of infection, leading to economic crisis as a collateral damage. In this work, we investigated the impact of human mobility (described via international commercial flights) on COVID-19 infection dynamics at the global scale. For this, we developed a graph neural network-based framework referred to as Dynamic Connectivity GraphSAGE (DCSAGE), which operates over spatiotemporal graphs and is well-suited for dynamically changing adjacency information. To obtain insights on the relative impact of different geographical locations, due to their associated air traffic, on the evolution of the pandemic, we conducted local sensitivity analysis on our model through node perturbation experiments. From our analyses, we identified Western Europe, North America, and Middle East as the leading geographical locations fueling the pandemic, attributed to the enormity of air traffic originating or transiting through these regions. We used these observations to identify tangible air traffic reduction strategies that can have a high impact on controlling the pandemic, with minimal interference to human mobility. Our work provides a robust deep learning-based tool to study global pandemics and is of key relevance to policy makers to take informed decisions regarding air traffic restrictions during future outbreaks.