Abstract:In this paper, we analyze the computational limitations of Mamba and State-space Models (SSMs) by using the circuit complexity framework. Despite Mamba's stateful design and recent attention as a strong candidate to outperform Transformers, we have demonstrated that both Mamba and SSMs with $\mathrm{poly}(n)$-precision and constant-depth layers reside within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. This result indicates Mamba has the same computational capabilities as Transformer theoretically, and it cannot solve problems like arithmetic formula problems, boolean formula value problems, and permutation composition problems if $\mathsf{TC}^0 \neq \mathsf{NC}^1$. Therefore, it challenges the assumption Mamba is more computationally expressive than Transformers. Our contributions include rigorous proofs showing that Selective SSM and Mamba architectures can be simulated by $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ circuits, and they cannot solve problems outside $\mathsf{TC}^0$.
Abstract:Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data. Recently, many works are exploring synthetic data generation using LLMs. However, they primarily focus on prompt engineering with standard supervised instruction-finetuned models, which contains a fundamental limitation: these models are optimized for general question-answering/problem-solving rather than data generation. We propose a paradigm shift named \textbf{NOMAD} by investigating how to specifically train models for data generation, demonstrating that this task differs significantly from training a classical LM. We identify two key factors: no-prompt-masked training and proper training set size selection. Our method, NOMAD, shows substantial improvements over baselines, achieving >4\% gains in TriviaQA and >2\% in GSM8K with limited training data. Finally, we offer new insights by interpreting synthetic data through the lenses of "relevance" and "novelty".
Abstract:Visual Language Models (VLMs) are essential for various tasks, particularly visual reasoning tasks, due to their robust multi-modal information integration, visual reasoning capabilities, and contextual awareness. However, existing \VLMs{}' visual spatial reasoning capabilities are often inadequate, struggling even with basic tasks such as distinguishing left from right. To address this, we propose the \ours{} model, designed to enhance the visual spatial reasoning abilities of VLMS. ZeroVLM employs Zero-1-to-3, a 3D reconstruction model for obtaining different views of the input images and incorporates a prompting mechanism to further improve visual spatial reasoning. Experimental results on four visual spatial reasoning datasets show that our \ours{} achieves up to 19.48% accuracy improvement, which indicates the effectiveness of the 3D reconstruction and prompting mechanisms of our ZeroVLM.
Abstract:Reinforcement learning with human feedback (RLHF), as a widely adopted approach in current large language model pipelines, is \textit{bottlenecked by the size of human preference data}. While traditional methods rely on offline preference dataset constructions, recent approaches have shifted towards online settings, where a learner uses a small amount of labeled seed data and a large pool of unlabeled prompts to iteratively construct new preference data through self-generated responses and high-quality reward/preference feedback. However, most current online algorithms still focus on preference labeling during policy model updating with given feedback oracles, which incurs significant expert query costs. \textit{We are the first to explore cost-effective proxy reward oracles construction strategies for further labeling preferences or rewards with extremely limited labeled data and expert query budgets}. Our approach introduces two key innovations: (1) on-policy query to avoid OOD and imbalance issues in seed data, and (2) active learning to select the most informative data for preference queries. Using these methods, we train a evaluation model with minimal expert-labeled data, which then effectively labels nine times more preference pairs for further RLHF training. For instance, our model using Direct Preference Optimization (DPO) gains around over 1% average improvement on AlpacaEval2, MMLU-5shot and MMLU-0shot, with only 1.7K query cost. Our methodology is orthogonal to other direct expert query-based strategies and therefore might be integrated with them to further reduce query costs.
Abstract:Aligning language models (LMs) to human preferences has emerged as a critical pursuit, enabling these models to better serve diverse user needs. Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives. Here, we propose $\textbf{multi-objective decoding (MOD)}$, a decoding-time algorithm that outputs the next token from a linear combination of predictions of all base models, for any given weightings over different objectives. We exploit a common form among a family of $f$-divergence regularized alignment approaches (such as PPO, DPO, and their variants) to identify a closed-form solution by Legendre transform, and derive an efficient decoding strategy. Theoretically, we show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method. Empirical results demonstrate the effectiveness of the algorithm. For example, compared to a parameter-merging baseline, MOD achieves 12.8% overall reward improvement when equally optimizing towards $3$ objectives. Moreover, we experiment with MOD on combining three fully-finetuned LLMs of different model sizes, each aimed at different objectives such as safety, coding, and general user preference. Unlike traditional methods that require careful curation of a mixture of datasets to achieve comprehensive improvement, we can quickly experiment with preference weightings using MOD to find the best combination of models. Our best combination reduces toxicity on Toxigen to nearly 0% and achieves 7.9--33.3% improvement across other three metrics ($\textit{i.e.}$, Codex@1, GSM-COT, BBH-COT).
Abstract:Data selection has emerged as a core issue for large-scale visual-language model pretaining (e.g., CLIP), particularly with noisy web-curated datasets. Three main data selection approaches are: (1) leveraging external non-CLIP models to aid data selection, (2) training new CLIP-style embedding models that are more effective at selecting high-quality data than the original OpenAI CLIP model, and (3) designing better metrics or strategies universally applicable to any CLIP embedding without requiring specific model properties (e.g., CLIPScore is one popular metric). While the first two approaches have been extensively studied, the third remains under-explored. In this paper, we advance the third approach by proposing two new methods. Firstly, instead of classical CLIP scores that only consider the alignment between two modalities from a single sample, we introduce negCLIPLoss, a CLIP loss-inspired method that adds the alignment between one sample and its contrastive pairs as an extra normalization term for better quality measurement. Secondly, when downstream tasks are known, we propose a new norm-based metric, NormSim, to measure the similarity between pretraining data and target data. We test our methods on the data selection benchmark, DataComp~\cite{gadre2023datacomp}. Compared to the best baseline using only OpenAI's CLIP-L/14, our methods achieve a 5.3\% improvement on ImageNet-1k and a 2.8\% improvement on 38 downstream evaluation tasks. Moreover, both negCLIPLoss and NormSim are compatible with existing techniques. By combining our methods with the current best methods DFN~\cite{fang2023data} and HYPE~\cite{kim2024hype}, we can boost average performance on downstream tasks by 0.9\%, achieving a new state-of-the-art.
Abstract:In recent years, data selection has emerged as a core issue for large-scale visual-language model pretraining, especially on noisy web-curated datasets. One widely adopted strategy assigns quality scores such as CLIP similarity for each sample and retains the data pairs with the highest scores. However, these approaches are agnostic of data distribution and always fail to select the most informative samples. To solve this problem, we propose a simple yet theoretically principled metric named Variance Alignment Score (VAS), which has the form $\langle \Sigma_{\text{test}}, \Sigma_i\rangle$. Here, $\Sigma_{\text{test}}$ represents the target (cross-)covariance matrix we aim to align, potentially based on prior knowledge, while $\Sigma_i$ denotes the tensor product of single or multi-modal representations for the $i$-th sample. We further design a new data selection method that maximizes the total VAS. We provide theoretical analysis in a simplified setting to demonstrate the theoretical advantage of VAS over random or other existing data selection. Experimentally, applying VAS and CLIP scores together can outperform baselines by a margin of $1.3\%$ average on 38 evaluation sets for noisy dataset DataComp and $2.5\%$ on VTAB for high-quality dataset CC12M. Additionally, our ablation study also shows visual features are better than text for calculating VAS, and the related classical experimental design methods may fail under this context.
Abstract:Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only $50\%$ of annotation cost required by random sampling.
Abstract:Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: https://github.com/EfficientTraining/LabelBench.
Abstract:Representation learning based on multi-task pretraining has become a powerful approach in many domains. In particular, task-aware representation learning aims to learn an optimal representation for a specific target task by sampling data from a set of source tasks, while task-agnostic representation learning seeks to learn a universal representation for a class of tasks. In this paper, we propose a general and versatile algorithmic and theoretic framework for \textit{active representation learning}, where the learner optimally chooses which source tasks to sample from. This framework, along with a tractable meta algorithm, allows most arbitrary target and source task spaces (from discrete to continuous), covers both task-aware and task-agnostic settings, and is compatible with deep representation learning practices. We provide several instantiations under this framework, from bilinear and feature-based nonlinear to general nonlinear cases. In the bilinear case, by leveraging the non-uniform spectrum of the task representation and the calibrated source-target relevance, we prove that the sample complexity to achieve $\varepsilon$-excess risk on target scales with $ (k^*)^2 \|v^*\|_2^2 \varepsilon^{-2}$ where $k^*$ is the effective dimension of the target and $\|v^*\|_2^2 \in (0,1]$ represents the connection between source and target space. Compared to the passive one, this can save up to $\frac{1}{d_W}$ of sample complexity, where $d_W$ is the task space dimension. Finally, we demonstrate different instantiations of our meta algorithm in synthetic datasets and robotics problems, from pendulum simulations to real-world drone flight datasets. On average, our algorithms outperform baselines by $20\%-70\%$.