Abstract:The explosion of open-sourced models and Question-Answering (QA) datasets emphasizes the importance of automated QA evaluation. We studied the statistics of the existing evaluation metrics for a better understanding of their limitations. By measuring the correlation coefficients of each evaluation metric concerning human-like evaluation score, we observed the following: (1) existing metrics have a high correlation among them concerning the question type (e.g., single word, single phrase, etc.), (2) no single metric can adequately estimate the human-like evaluation. As a potential solution, we discuss how a Mixture Of Grader could potentially improve the auto QA evaluator quality.
Abstract:Despite a widespread success in various applications, large language models (LLMs) often stumble when tackling basic physical reasoning or executing robotics tasks, due to a lack of direct experience with the physical nuances of the real world. To address these issues, we propose a Grounding Large language model with Imperfect world MOdel (GLIMO), which utilizes proxy world models such as simulators to collect and synthesize trining data. GLIMO incorporates an LLM agent-based data generator to automatically create high-quality and diverse instruction datasets. The generator includes an iterative self-refining module for temporally consistent experience sampling, a diverse set of question-answering instruction seeds, and a retrieval-augmented generation module for reflecting on prior experiences. Comprehensive experiments show that our approach improve the performance of strong open-source LLMs like LLaMA-3 with a performance boost of 2.04 $\times$, 1.54 $\times$, and 1.82 $\times$ across three different benchmarks, respectively. The performance is able to compete with or surpass their larger counterparts such as GPT-4.
Abstract:In recent years, Graph Neural Networks (GNNs) have ignited a surge of innovation, significantly enhancing the processing of geometric data structures such as graphs, point clouds, and meshes. As the domain continues to evolve, a series of frameworks and libraries are being developed to push GNN efficiency to new heights. While graph-centric libraries have achieved success in the past, the advent of efficient tensor compilers has highlighted the urgent need for tensor-centric libraries. Yet, efficient tensor-centric frameworks for GNNs remain scarce due to unique challenges and limitations encountered when implementing segment reduction in GNN contexts. We introduce GeoT, a cutting-edge tensor-centric library designed specifically for GNNs via efficient segment reduction. GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space. Importantly, GeoT is engineered for straightforward fusion within a computation graph, ensuring compatibility with contemporary tensor-centric machine learning frameworks and compilers. Setting a new performance benchmark, GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.
Abstract:The increasing adoption of WebAssembly (Wasm) for performance-critical and security-sensitive tasks drives the demand for WebAssembly program comprehension and reverse engineering. Recent studies have introduced machine learning (ML)-based WebAssembly reverse engineering tools. Yet, the generalization of task-specific ML solutions remains challenging, because their effectiveness hinges on the availability of an ample supply of high-quality task-specific labeled data. Moreover, previous works overlook the high-level semantics present in source code and its documentation. Acknowledging the abundance of available source code with documentation, which can be compiled into WebAssembly, we propose to learn representations of them concurrently and harness their mutual relationships for effective WebAssembly reverse engineering. In this paper, we present WasmRev, the first multi-modal pre-trained language model for WebAssembly reverse engineering. WasmRev is pre-trained using self-supervised learning on a large-scale multi-modal corpus encompassing source code, code documentation and the compiled WebAssembly, without requiring labeled data. WasmRev incorporates three tailored multi-modal pre-training tasks to capture various characteristics of WebAssembly and cross-modal relationships. WasmRev is only trained once to produce general-purpose representations that can broadly support WebAssembly reverse engineering tasks through few-shot fine-tuning with much less labeled data, improving data efficiency. We fine-tune WasmRev onto three important reverse engineering tasks: type recovery, function purpose identification and WebAssembly summarization. Our results show that WasmRev pre-trained on the corpus of multi-modal samples establishes a robust foundation for these tasks, achieving high task accuracy and outperforming the state-of-the-art ML methods for WebAssembly reverse engineering.
Abstract:Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step (DSS), a novel method utilizing chain-of-thought (CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Code and models will be released soon.
Abstract:Database systems often rely on historical query traces to perform workload-based performance tuning. However, real production workloads are time-evolving, making historical queries ineffective for optimizing future workloads. To address this challenge, we propose SIBYL, an end-to-end machine learning-based framework that accurately forecasts a sequence of future queries, with the entire query statements, in various prediction windows. Drawing insights from real-workloads, we propose template-based featurization techniques and develop a stacked-LSTM with an encoder-decoder architecture for accurate forecasting of query workloads. We also develop techniques to improve forecasting accuracy over large prediction windows and achieve high scalability over large workloads with high variability in arrival rates of queries. Finally, we propose techniques to handle workload drifts. Our evaluation on four real workloads demonstrates that SIBYL can forecast workloads with an $87.3\%$ median F1 score, and can result in $1.7\times$ and $1.3\times$ performance improvement when applied to materialized view selection and index selection applications, respectively.
Abstract:Learning-based approaches to autonomous vehicle planners have the potential to scale to many complicated real-world driving scenarios by leveraging huge amounts of driver demonstrations. However, prior work only learns to estimate a single planning trajectory, while there may be multiple acceptable plans in real-world scenarios. To solve the problem, we propose an interpretable neural planner to regress a heatmap, which effectively represents multiple potential goals in the bird's-eye view of an autonomous vehicle. The planner employs an adaptive Gaussian kernel and relaxed hourglass loss to better capture the uncertainty of planning problems. We also use a negative Gaussian kernel to add supervision to the heatmap regression, enabling the model to learn collision avoidance effectively. Our systematic evaluation on the Lyft Open Dataset across a diverse range of real-world driving scenarios shows that our model achieves a safer and more flexible driving performance than prior works.
Abstract:Generating safety-critical scenarios is essential for testing and verifying the safety of autonomous vehicles. Traditional optimization techniques suffer from the curse of dimensionality and limit the search space to fixed parameter spaces. To address these challenges, we propose a deep reinforcement learning approach that generates scenarios by sequential editing, such as adding new agents or modifying the trajectories of the existing agents. Our framework employs a reward function consisting of both risk and plausibility objectives. The plausibility objective leverages generative models, such as a variational autoencoder, to learn the likelihood of the generated parameters from the training datasets; It penalizes the generation of unlikely scenarios. Our approach overcomes the dimensionality challenge and explores a wide range of safety-critical scenarios. Our evaluation demonstrates that the proposed method generates safety-critical scenarios of higher quality compared with previous approaches.
Abstract:Autonomous vehicles (AVs) are envisioned to revolutionize our life by providing safe, relaxing, and convenient ground transportation. The computing systems in such vehicles are required to interpret various sensor data and generate responses to the environment in a timely manner to ensure driving safety. However, such timing-related safety requirements are largely unexplored in prior works. In this paper, we conduct a systematic study to understand the timing requirements of AV systems. We focus on investigating and mitigating the sources of tail latency in Level-4 AV computing systems. We observe that the performance of AV algorithms is not uniformly distributed -- instead, the latency is susceptible to vehicle environment fluctuations, such as traffic density. This contributes to burst computation and memory access in response to the traffic, and further leads to tail latency in the system. Furthermore, we observe that tail latency also comes from a mismatch between the pre-configured AV computation pipeline and the dynamic latency requirements in real-world driving scenarios. Based on these observations, we propose a set of system designs to mitigate AV tail latency. We demonstrate our design on widely-used industrial Level-4 AV systems, Baidu Apollo and Autoware. The evaluation shows that our design achieves 1.65 X improvement over the worst-case latency and 1.3 X over the average latency, and avoids 93% of accidents on Apollo.
Abstract:User embeddings (vectorized representations of a user) are essential in recommendation systems. Numerous approaches have been proposed to construct a representation for the user in order to find similar items for retrieval tasks, and they have been proven effective in industrial recommendation systems as well. Recently people have discovered the power of using multiple embeddings to represent a user, with the hope that each embedding represents the user's interest in a certain topic. With multi-interest representation, it's important to model the user's preference over the different topics and how the preference change with time. However, existing approaches either fail to estimate the user's affinity to each interest or unreasonably assume every interest of every user fades with an equal rate with time, thus hurting the recall of candidate retrieval. In this paper, we propose the Multi-Interest Preference (MIP) model, an approach that not only produces multi-interest for users by using the user's sequential engagement more effectively but also automatically learns a set of weights to represent the preference over each embedding so that the candidates can be retrieved from each interest proportionally. Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.