Abstract:Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
Abstract:Prompt tuning can further enhance the performance of visual-language models across various downstream tasks (e.g., few-shot learning), enabling them to better adapt to specific applications and needs. In this paper, we present a Diversity Covariance-Aware framework that learns distributional information from the data to enhance the few-shot ability of the prompt model. First, we propose a covariance-aware method that models the covariance relationships between visual features and uses anisotropic Mahalanobis distance, instead of the suboptimal cosine distance, to measure the similarity between two modalities. We rigorously derive and prove the validity of this modeling process. Then, we propose the diversity-aware method, which learns multiple diverse soft prompts to capture different attributes of categories and aligns them independently with visual modalities. This method achieves multi-centered covariance modeling, leading to more diverse decision boundaries. Extensive experiments on 11 datasets in various tasks demonstrate the effectiveness of our method.
Abstract:With the development of visual-language models (VLM) in downstream task applications, test-time adaptation methods based on VLM have attracted increasing attention for their ability to address changes distribution in test-time. Although prior approaches have achieved some progress, they typically either demand substantial computational resources or are constrained by the limitations of the original feature space, rendering them less effective for test-time adaptation tasks. To address these challenges, we propose a training-free feature space rotation with basis transformation for test-time adaptation. By leveraging the inherent distinctions among classes, we reconstruct the original feature space and map it to a new representation, thereby enhancing the clarity of class differences and providing more effective guidance for the model during testing. Additionally, to better capture relevant information from various classes, we maintain a dynamic queue to store representative samples. Experimental results across multiple benchmarks demonstrate that our method outperforms state-of-the-art techniques in terms of both performance and efficiency.
Abstract:Existing prompt learning methods in Vision-Language Models (VLM) have effectively enhanced the transfer capability of VLM to downstream tasks, but they suffer from a significant decline in generalization due to severe overfitting. To address this issue, we propose a framework named LOBG for vision-language models. Specifically, we use CLIP to filter out fine-grained foreground information that might cause overfitting, thereby guiding prompts with basic visual concepts. To further mitigate overfitting, we devel oped a structural topology preservation (STP) loss at the feature level, which endows the feature space with overall plasticity, allowing effective reshaping of the feature space during optimization. Additionally, we employed hierarchical logit distilation (HLD) at the output level to constrain outputs, complementing STP at the output end. Extensive experimental results demonstrate that our method significantly improves generalization capability and alleviates overfitting compared to state-of-the-art approaches.
Abstract:The problem of Rehearsal-Free Continual Learning (RFCL) aims to continually learn new knowledge while preventing forgetting of the old knowledge, without storing any old samples and prototypes. The latest methods leverage large-scale pre-trained models as the backbone and use key-query matching to generate trainable prompts to learn new knowledge. However, the domain gap between the pre-training dataset and the downstream datasets can easily lead to inaccuracies in key-query matching prompt selection when directly generating queries using the pre-trained model, which hampers learning new knowledge. Thus, in this paper, we propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA). It mainly comprises a parameter-extensible continual adapter layer (CAL) and a scaling and shifting (S&S) module in parallel with the pre-trained model. C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge, thereby avoiding matching errors and operational inefficiencies introduced by key-query matching. To reduce the gap, C-ADA employs an S&S module to transfer the feature space from pre-trained datasets to downstream datasets. Moreover, we propose an orthogonal loss to mitigate the interaction between old and new knowledge. Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method. Additionally, we conduct experiments on domain-incremental learning, surpassing the SOTA, and demonstrating the generality of our approach in different settings.
Abstract:Online task-free continual learning (OTFCL) is a more challenging variant of continual learning which emphasizes the gradual shift of task boundaries and learns in an online mode. Existing methods rely on a memory buffer composed of old samples to prevent forgetting. However,the use of memory buffers not only raises privacy concerns but also hinders the efficient learning of new samples. To address this problem, we propose a novel framework called I2CANSAY that gets rid of the dependence on memory buffers and efficiently learns the knowledge of new data from one-shot samples. Concretely, our framework comprises two main modules. Firstly, the Inter-Class Analogical Augmentation (ICAN) module generates diverse pseudo-features for old classes based on the inter-class analogy of feature distributions for different new classes, serving as a substitute for the memory buffer. Secondly, the Intra-Class Significance Analysis (ISAY) module analyzes the significance of attributes for each class via its distribution standard deviation, and generates the importance vector as a correction bias for the linear classifier, thereby enhancing the capability of learning from new samples. We run our experiments on four popular image classification datasets: CoRe50, CIFAR-10, CIFAR-100, and CUB-200, our approach outperforms the prior state-of-the-art by a large margin.
Abstract:Detecting anomaly patterns from images is a crucial artificial intelligence technique in industrial applications. Recent research in this domain has emphasized the necessity of a large volume of training data, overlooking the practical scenario where, post-deployment of the model, unlabeled data containing both normal and abnormal samples can be utilized to enhance the model's performance. Consequently, this paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task. Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously. To tackle this issue, we propose modeling the feature distribution of normal images using a Neural Gas network, which offers the flexibility to adapt the topology structure to identify outliers in the data flow. In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation. Furthermore, we introduce an algorithm that can incrementally update parameters without the need to store previous samples. Comprehensive experimental results demonstrate that our method can achieve substantial performance under the FOADS setting, while ensuring that the time complexity remains within an acceptable range on MVTec AD and BTAD datasets.
Abstract:In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge. Experience-Replay methods store a subset of the old images for joint training. In the scenario of more strict privacy protection, storing the old images becomes infeasible, which leads to a more severe plasticity-stability dilemma and classifier bias. To meet the above challenges, we propose a new architecture, named continual expansion and absorption transformer~(CEAT). The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters. After the task ends, we losslessly absorb the extended parameters into the backbone to ensure that the number of parameters remains constant. To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space. Besides, to address the classifier bias towards the new classes, we propose a novel approach to generate the pseudo-features to correct the classifier. We experiment with our methods on three standard Non-Exemplar Class-Incremental Learning~(NECIL) benchmarks. Extensive experiments demonstrate that our model gets a significant improvement compared with the previous works and achieves 5.38%, 5.20%, and 4.92% improvement on CIFAR-100, TinyImageNet, and ImageNet-Subset.
Abstract:Current class-incremental learning research mainly focuses on single-label classification tasks while multi-label class-incremental learning (MLCIL) with more practical application scenarios is rarely studied. Although there have been many anti-forgetting methods to solve the problem of catastrophic forgetting in class-incremental learning, these methods have difficulty in solving the MLCIL problem due to label absence and information dilution. In this paper, we propose a knowledge restore and transfer (KRT) framework for MLCIL, which includes a dynamic pseudo-label (DPL) module to restore the old class knowledge and an incremental cross-attention(ICA) module to save session-specific knowledge and transfer old class knowledge to the new model sufficiently. Besides, we propose a token loss to jointly optimize the incremental cross-attention module. Experimental results on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on multi-label class-incremental learning tasks.
Abstract:In this paper, we focus on a new and challenging decentralized machine learning paradigm in which there are continuous inflows of data to be addressed and the data are stored in multiple repositories. We initiate the study of data decentralized class-incremental learning (DCIL) by making the following contributions. Firstly, we formulate the DCIL problem and develop the experimental protocol. Secondly, we introduce a paradigm to create a basic decentralized counterpart of typical (centralized) class-incremental learning approaches, and as a result, establish a benchmark for the DCIL study. Thirdly, we further propose a Decentralized Composite knowledge Incremental Distillation framework (DCID) to transfer knowledge from historical models and multiple local sites to the general model continually. DCID consists of three main components namely local class-incremental learning, collaborated knowledge distillation among local models, and aggregated knowledge distillation from local models to the general one. We comprehensively investigate our DCID framework by using different implementations of the three components. Extensive experimental results demonstrate the effectiveness of our DCID framework. The codes of the baseline methods and the proposed DCIL will be released at https://github.com/zxxxxh/DCIL.