Abstract:Audio Descriptions (ADs) aim to provide a narration of a movie in text form, describing non-dialogue-related narratives, such as characters, actions, or scene establishment. Automatic generation of ADs remains challenging due to: i) the domain gap between movie-AD data and existing data used to train vision-language models, and ii) the issue of contextual redundancy arising from highly similar neighboring visual clips in a long movie. In this work, we propose DistinctAD, a novel two-stage framework for generating ADs that emphasize distinctiveness to produce better narratives. To address the domain gap, we introduce a CLIP-AD adaptation strategy that does not require additional AD corpora, enabling more effective alignment between movie and AD modalities at both global and fine-grained levels. In Stage-II, DistinctAD incorporates two key innovations: (i) a Contextual Expectation-Maximization Attention (EMA) module that reduces redundancy by extracting common bases from consecutive video clips, and (ii) an explicit distinctive word prediction loss that filters out repeated words in the context, ensuring the prediction of unique terms specific to the current AD. Comprehensive evaluations on MAD-Eval, CMD-AD, and TV-AD benchmarks demonstrate the superiority of DistinctAD, with the model consistently outperforming baselines, particularly in Recall@k/N, highlighting its effectiveness in producing high-quality, distinctive ADs.
Abstract:Existing deep trackers are typically trained with largescale video frames with annotated bounding boxes. However, these bounding boxes are expensive and time-consuming to annotate, in particular for large scale datasets. In this paper, we propose to learn tracking representations from single point annotations (i.e., 4.5x faster to annotate than the traditional bounding box) in a weakly supervised manner. Specifically, we propose a soft contrastive learning (SoCL) framework that incorporates target objectness prior into end-to-end contrastive learning. Our SoCL consists of adaptive positive and negative sample generation, which is memory-efficient and effective for learning tracking representations. We apply the learned representation of SoCL to visual tracking and show that our method can 1) achieve better performance than the fully supervised baseline trained with box annotations under the same annotation time cost; 2) achieve comparable performance of the fully supervised baseline by using the same number of training frames and meanwhile reducing annotation time cost by 78% and total fees by 85%; 3) be robust to annotation noise.
Abstract:The existing crowd counting models require extensive training data, which is time-consuming to annotate. To tackle this issue, we propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM), an adaptation of the Segmentation Anything Model (SAM), to generate pseudo-labels for training crowd counting models. However, our initial investigation reveals that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas. To overcome this limitation, we propose an adaptive resolution SEEM to handle the scale variations, occlusions, and overlapping of people within crowd scenes. Alongside this, we introduce a robust localization method, based on Gaussian Mixture Models, for predicting the head positions in the predicted people masks. Given the mask and point pseudo-labels, we propose a robust loss function, which is designed to exclude uncertain regions based on SEEM's predictions, thereby enhancing the training process of the counting networks. Finally, we propose an iterative method for generating pseudo-labels. This method aims at improving the quality of the segmentation masks by identifying more tiny persons in high-density regions, which are often missed in the first pseudo-labeling stage. Overall, our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable results to some supervised methods. This makes it a highly effective and versatile tool for crowd counting, especially in situations where labeled data is not available.
Abstract:The current popular methods for video object segmentation (VOS) implement feature matching through several hand-crafted modules that separately perform feature extraction and matching. However, the above hand-crafted designs empirically cause insufficient target interaction, thus limiting the dynamic target-aware feature learning in VOS. To tackle these limitations, this paper presents a scalable Simplified VOS (SimVOS) framework to perform joint feature extraction and matching by leveraging a single transformer backbone. Specifically, SimVOS employs a scalable ViT backbone for simultaneous feature extraction and matching between query and reference features. This design enables SimVOS to learn better target-ware features for accurate mask prediction. More importantly, SimVOS could directly apply well-pretrained ViT backbones (e.g., MAE) for VOS, which bridges the gap between VOS and large-scale self-supervised pre-training. To achieve a better performance-speed trade-off, we further explore within-frame attention and propose a new token refinement module to improve the running speed and save computational cost. Experimentally, our SimVOS achieves state-of-the-art results on popular video object segmentation benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9% J&F) and YouTube-VOS 2019 (84.2% J&F), without applying any synthetic video or BL30K pre-training used in previous VOS approaches.
Abstract:In this paper, we study masked autoencoder (MAE) pretraining on videos for matching-based downstream tasks, including visual object tracking (VOT) and video object segmentation (VOS). A simple extension of MAE is to randomly mask out frame patches in videos and reconstruct the frame pixels. However, we find that this simple baseline heavily relies on spatial cues while ignoring temporal relations for frame reconstruction, thus leading to sub-optimal temporal matching representations for VOT and VOS. To alleviate this problem, we propose DropMAE, which adaptively performs spatial-attention dropout in the frame reconstruction to facilitate temporal correspondence learning in videos. We show that our DropMAE is a strong and efficient temporal matching learner, which achieves better finetuning results on matching-based tasks than the ImageNetbased MAE with 2X faster pre-training speed. Moreover, we also find that motion diversity in pre-training videos is more important than scene diversity for improving the performance on VOT and VOS. Our pre-trained DropMAE model can be directly loaded in existing ViT-based trackers for fine-tuning without further modifications. Notably, DropMAE sets new state-of-the-art performance on 8 out of 9 highly competitive video tracking and segmentation datasets. Our code and pre-trained models are available at https://github.com/jimmy-dq/DropMAE.git.
Abstract:In this paper, we introduce a set of effective TOken REduction (TORE) strategies for Transformer-based Human Mesh Recovery from monocular images. Current SOTA performance is achieved by Transformer-based structures. However, they suffer from high model complexity and computation cost caused by redundant tokens. We propose token reduction strategies based on two important aspects, i.e., the 3D geometry structure and 2D image feature, where we hierarchically recover the mesh geometry with priors from body structure and conduct token clustering to pass fewer but more discriminative image feature tokens to the Transformer. As a result, our method vastly reduces the number of tokens involved in high-complexity interactions in the Transformer, achieving competitive accuracy of shape recovery at a significantly reduced computational cost. We conduct extensive experiments across a wide range of benchmarks to validate the proposed method and further demonstrate the generalizability of our method on hand mesh recovery. Our code will be publicly available once the paper is published.
Abstract:Recent works on 3D single object tracking treat the tracking as a target-specific 3D detection task, where an off-the-shelf 3D detector is commonly employed for tracking. However, it is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete. In this paper, we address this issue by explicitly leveraging temporal motion cues and propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors, which is lighter, faster, and more accurate than previous trackers. Specifically, the motion prediction module is firstly introduced to estimate a potential target center of the current frame in a point-cloud free way. Then, an explicit voting module is proposed to directly regress the 3D box from the estimated target center. Extensive experiments on KITTI and NuScenes datasets demonstrate that our DMT, without applying any complicated 3D detectors, can still achieve better performance (~10% improvement on the NuScenes dataset) and faster tracking speed (i.e., 72 FPS) than state-of-the-art approaches. Our codes will be released publicly.
Abstract:Event cameras, which are asynchronous bio-inspired vision sensors, have shown great potential in computer vision and artificial intelligence. However, the application of event cameras to object-level motion estimation or tracking is still in its infancy. The main idea behind this work is to propose a novel deep neural network to learn and regress a parametric object-level motion/transform model for event-based object tracking. To achieve this goal, we propose a synchronous Time-Surface with Linear Time Decay (TSLTD) representation, which effectively encodes the spatio-temporal information of asynchronous retinal events into TSLTD frames with clear motion patterns. We feed the sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMRNet) to perform an end-to-end 5-DoF object motion regression. Our method is compared with state-of-the-art object tracking methods, that are based on conventional cameras or event cameras. The experimental results show the superiority of our method in handling various challenging environments such as fast motion and low illumination conditions.
Abstract:Event cameras, which are asynchronous bio-inspired vision sensors, have shown great potential in a variety of situations, such as fast motion and low illumination scenes. However, most of the event-based object tracking methods are designed for scenarios with untextured objects and uncluttered backgrounds. There are few event-based object tracking methods that support bounding box-based object tracking. The main idea behind this work is to propose an asynchronous Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking. To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm, which asynchronously and effectively warps the spatio-temporal information of asynchronous retinal events to a sequence of ATSLTD frames with clear object contours. We feed the sequence of ATSLTD frames to the proposed ETD method to perform accurate and efficient object tracking, which leverages the high temporal resolution property of event cameras. We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD. The experimental results show the superiority of the proposed ETD method in handling various challenging environments.
Abstract:Humans can easily learn new concepts from just a single exemplar, mainly due to their remarkable ability to imagine or hallucinate what the unseen exemplar may look like in different settings. Incorporating such an ability to hallucinate diverse new samples of the tracked instance can help the trackers alleviate the over-fitting problem in the low-data tracking regime. To achieve this, we propose an effective adversarial approach, denoted as adversarial "hallucinator" (AH), for robust visual tracking. The proposed AH is designed to firstly learn transferable non-linear deformations between a pair of same-identity instances, and then apply these deformations to an unseen tracked instance in order to generate diverse positive training samples. By incorporating AH into an online tracking-by-detection framework, we propose the hallucinated adversarial tracker (HAT), which jointly optimizes AH with an online classifier (e.g., MDNet) in an end-to-end manner. In addition, a novel selective deformation transfer (SDT) method is presented to better select the deformations which are more suitable for transfer. Extensive experiments on 3 popular benchmarks demonstrate that our HAT achieves the state-of-the-art performance.