Abstract:Jailbreaking large language models (LLMs) has emerged as a critical security challenge with the widespread deployment of conversational AI systems. Adversarial users exploit these models through carefully crafted prompts to elicit restricted or unsafe outputs, a phenomenon commonly referred to as Jailbreaking. Despite numerous proposed defense mechanisms, attackers continue to develop adaptive prompting strategies, and existing models remain vulnerable. This motivates approaches that examine the internal behavior of LLMs rather than relying solely on prompt-level defenses. In this work, we study jailbreaking from both security and interpretability perspectives by analyzing how internal representations differ between jailbreak and benign prompts. We conduct a systematic layer-wise analysis across multiple open-source models, including GPT-J, LLaMA, Mistral, and the state-space model Mamba, and identify consistent latent-space patterns associated with harmful inputs. We then propose a tensor-based latent representation framework that captures structure in hidden activations and enables lightweight jailbreak detection without model fine-tuning or auxiliary LLM-based detectors. We further demonstrate that the latent signals can be used to actively disrupt jailbreak execution at inference time. On an abliterated LLaMA-3.1-8B model, selectively bypassing high-susceptibility layers blocks 78% of jailbreak attempts while preserving benign behavior on 94% of benign prompts. This intervention operates entirely at inference time and introduces minimal overhead, providing a scalable foundation for achieving stronger coverage by incorporating additional attack distributions or more refined susceptibility thresholds. Our results provide evidence that jailbreak behavior is rooted in identifiable internal structures and suggest a complementary, architecture-agnostic direction for improving LLM security.
Abstract:When designing new materials, it is often necessary to tailor the material design (with respect to its design parameters) to have some desired properties (e.g. Young's modulus). As the set of design parameters grow, the search space grows exponentially, making the actual synthesis and evaluation of all material combinations virtually impossible. Even using traditional computational methods such as Finite Element Analysis becomes too computationally heavy to search the design space. Recent methods use machine learning (ML) surrogate models to more efficiently determine optimal material designs; unfortunately, these methods often (i) are notoriously difficult to interpret and (ii) under perform when the training data comes from a non-uniform sampling of the design space. We suggest the use of tensor completion methods as an all-in-one approach for interpretability and predictions. We observe classical tensor methods are able to compete with traditional ML in predictions, with the added benefit of their interpretable tensor factors (which are given completely for free, as a result of the prediction). In our experiments, we are able to rediscover physical phenomena via the tensor factors, indicating that our predictions are aligned with the true underlying physics of the problem. This also means these tensor factors could be used by experimentalists to identify potentially novel patterns, given we are able to rediscover existing ones. We also study the effects of both types of surrogate models when we encounter training data from a non-uniform sampling of the design space. We observe more specialized tensor methods that can give better generalization in these non-uniforms sampling scenarios. We find the best generalization comes from a tensor model, which is able to improve upon the baseline ML methods by up to 5% on aggregate $R^2$, and halve the error in some out of distribution regions.
Abstract:Local railway committees need timely situational awareness after highway-rail grade crossing incidents, yet official Federal Railroad Administration (FRA) investigations can take days to weeks. We present a demo system that populates Highway-Rail Grade Crossing Incident Data (Form 57) from news in real time. Our approach addresses two core challenges: the form is visually irregular and semantically dense, and news is noisy. To solve these problems, we design a pipeline that first converts Form 57 into a JSON schema using a vision language model with sample aggregation, and then performs grouped question answering following the intent of the form layout to reduce ambiguity. In addition, we build an evaluation dataset by aligning scraped news articles with official FRA records and annotating retrievable information. We then assess our system against various alternatives in terms of information retrieval accuracy and coverage.




Abstract:In recent years, graph neural networks (GNNs) have shown tremendous promise in solving problems in high energy physics, materials science, and fluid dynamics. In this work, we introduce a new application for GNNs in the physical sciences: instrumentation design. As a case study, we apply GNNs to simulate models of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and show that they are capable of accurately capturing the complex optical physics at play, while achieving runtimes 815 times faster than state of the art simulation packages. We discuss the unique challenges this problem provides for machine learning models. In addition, we provide a dataset of high-fidelity optical physics simulations for three interferometer topologies, which can be used as a benchmarking suite for future work in this direction.
Abstract:Integration of diverse data will be a pivotal step towards improving scientific explorations in many disciplines. This work establishes a vision-language model (VLM) that encodes videos with text input in order to classify various behaviors of a mouse existing in and engaging with their environment. Importantly, this model produces a behavioral vector over time for each subject and for each session the subject undergoes. The output is a valuable dataset that few programs are able to produce with as high accuracy and with minimal user input. Specifically, we use the open-source Qwen2.5-VL model and enhance its performance through prompts, in-context learning (ICL) with labeled examples, and frame-level preprocessing. We found that each of these methods contributes to improved classification, and that combining them results in strong F1 scores across all behaviors, including rare classes like freezing and fleeing, without any model fine-tuning. Overall, this model will support interdisciplinary researchers studying mouse behavior by enabling them to integrate diverse behavioral features, measured across multiple time points and environments, into a comprehensive dataset that can address complex research questions.




Abstract:Vision language models (VLMs) excel in multimodal understanding but are prone to adversarial attacks. Existing defenses often demand costly retraining or significant architecture changes. We introduce a lightweight defense using tensor decomposition suitable for any pre-trained VLM, requiring no retraining. By decomposing and reconstructing vision encoder representations, it filters adversarial noise while preserving meaning. Experiments with CLIP on COCO and Flickr30K show improved robustness. On Flickr30K, it restores 12.3\% performance lost to attacks, raising Recall@1 accuracy from 7.5\% to 19.8\%. On COCO, it recovers 8.1\% performance, improving accuracy from 3.8\% to 11.9\%. Analysis shows Tensor Train decomposition with low rank (8-32) and low residual strength ($\alpha=0.1-0.2$) is optimal. This method is a practical, plug-and-play solution with minimal overhead for existing VLMs.
Abstract:Graph Neural Networks (GNNs) have demonstrated remarkable results in various real-world applications, including drug discovery, object detection, social media analysis, recommender systems, and text classification. In contrast to their vast potential, training them on large-scale graphs presents significant computational challenges due to the resources required for their storage and processing. Graph Condensation has emerged as a promising solution to reduce these demands by learning a synthetic compact graph that preserves the essential information of the original one while maintaining the GNN's predictive performance. Despite their efficacy, current graph condensation approaches frequently rely on a computationally intensive bi-level optimization. Moreover, they fail to maintain a mapping between synthetic and original nodes, limiting the interpretability of the model's decisions. In this sense, a wide range of decomposition techniques have been applied to learn linear or multi-linear functions from graph data, offering a more transparent and less resource-intensive alternative. However, their applicability to graph condensation remains unexplored. This paper addresses this gap and proposes a novel method called Multi-view Graph Condensation via Tensor Decomposition (GCTD) to investigate to what extent such techniques can synthesize an informative smaller graph and achieve comparable downstream task performance. Extensive experiments on six real-world datasets demonstrate that GCTD effectively reduces graph size while preserving GNN performance, achieving up to a 4.0\ improvement in accuracy on three out of six datasets and competitive performance on large graphs compared to existing approaches. Our code is available at https://anonymous.4open.science/r/gctd-345A.
Abstract:Group fairness is important to consider in tensor decomposition to prevent discrimination based on social grounds such as gender or age. Although few works have studied group fairness in tensor decomposition, they suffer from performance degradation. To address this, we propose STAFF(Sparse Tensor Augmentation For Fairness) to improve group fairness by minimizing the gap in completion errors of different groups while reducing the overall tensor completion error. Our main idea is to augment a tensor with augmented entities including sufficient observed entries to mitigate imbalance and group bias in the sparse tensor. We evaluate \method on tensor completion with various datasets under conventional and deep learning-based tensor models. STAFF consistently shows the best trade-off between completion error and group fairness; at most, it yields 36% lower MSE and 59% lower MADE than the second-best baseline.
Abstract:How can we accurately complete tensors by learning relationships of dimensions along each mode? Tensor completion, a widely studied problem, is to predict missing entries in incomplete tensors. Tensor decomposition methods, fundamental tensor analysis tools, have been actively developed to solve tensor completion tasks. However, standard tensor decomposition models have not been designed to learn relationships of dimensions along each mode, which limits to accurate tensor completion. Also, previously developed tensor decomposition models have required prior knowledge between relations within dimensions to model the relations, expensive to obtain. This paper proposes TGL (Tensor Decomposition Learning Global and Local Structures) to accurately predict missing entries in tensors. TGL reconstructs a tensor with factor matrices which learn local structures with GNN without prior knowledges. Extensive experiments are conducted to evaluate TGL with baselines and datasets.




Abstract:Generating high-quality question-answer pairs for specialized technical domains remains challenging, with existing approaches facing a tradeoff between leveraging expert examples and achieving topical diversity. We present ExpertGenQA, a protocol that combines few-shot learning with structured topic and style categorization to generate comprehensive domain-specific QA pairs. Using U.S. Federal Railroad Administration documents as a test bed, we demonstrate that ExpertGenQA achieves twice the efficiency of baseline few-shot approaches while maintaining $94.4\%$ topic coverage. Through systematic evaluation, we show that current LLM-based judges and reward models exhibit strong bias toward superficial writing styles rather than content quality. Our analysis using Bloom's Taxonomy reveals that ExpertGenQA better preserves the cognitive complexity distribution of expert-written questions compared to template-based approaches. When used to train retrieval models, our generated queries improve top-1 accuracy by $13.02\%$ over baseline performance, demonstrating their effectiveness for downstream applications in technical domains.