Abstract:When designing materials to optimize certain properties, there are often many possible configurations of designs that need to be explored. For example, the materials' composition of elements will affect properties such as strength or conductivity, which are necessary to know when developing new materials. Exploring all combinations of elements to find optimal materials becomes very time consuming, especially when there are more design variables. For this reason, there is growing interest in using machine learning (ML) to predict a material's properties. In this work, we model the optimization of certain material properties as a tensor completion problem, to leverage the structure of our datasets and navigate the vast number of combinations of material configurations. Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error compared with baseline ML models such as GradientBoosting and Multilayer Perceptron (MLP), while maintaining similar training speed.
Abstract:Hyperparameter optimization is an essential component in many data science pipelines and typically entails exhaustive time and resource-consuming computations in order to explore the combinatorial search space. Similar to this problem, other key operations in data science pipelines exhibit the exact same properties. Important examples are: neural architecture search, where the goal is to identify the best design choices for a neural network, and query cardinality estimation, where given different predicate values for a SQL query the goal is to estimate the size of the output. In this paper, we abstract away those essential components of data science pipelines and we model them as instances of tensor completion, where each variable of the search space corresponds to one mode of the tensor, and the goal is to identify all missing entries of the tensor, corresponding to all combinations of variable values, starting from a very small sample of observed entries. In order to do so, we first conduct a thorough experimental evaluation of existing state-of-the-art tensor completion techniques and introduce domain-inspired adaptations (such as smoothness across the discretized variable space) and an ensemble technique which is able to achieve state-of-the-art performance. We extensively evaluate existing and proposed methods in a number of datasets generated corresponding to (a) hyperparameter optimization for non-neural network models, (b) neural architecture search, and (c) variants of query cardinality estimation, demonstrating the effectiveness of tensor completion as a tool for automating data science pipelines. Furthermore, we release our generated datasets and code in order to provide benchmarks for future work on this topic.