Abstract:Hyperparameter optimization is an essential component in many data science pipelines and typically entails exhaustive time and resource-consuming computations in order to explore the combinatorial search space. Similar to this problem, other key operations in data science pipelines exhibit the exact same properties. Important examples are: neural architecture search, where the goal is to identify the best design choices for a neural network, and query cardinality estimation, where given different predicate values for a SQL query the goal is to estimate the size of the output. In this paper, we abstract away those essential components of data science pipelines and we model them as instances of tensor completion, where each variable of the search space corresponds to one mode of the tensor, and the goal is to identify all missing entries of the tensor, corresponding to all combinations of variable values, starting from a very small sample of observed entries. In order to do so, we first conduct a thorough experimental evaluation of existing state-of-the-art tensor completion techniques and introduce domain-inspired adaptations (such as smoothness across the discretized variable space) and an ensemble technique which is able to achieve state-of-the-art performance. We extensively evaluate existing and proposed methods in a number of datasets generated corresponding to (a) hyperparameter optimization for non-neural network models, (b) neural architecture search, and (c) variants of query cardinality estimation, demonstrating the effectiveness of tensor completion as a tool for automating data science pipelines. Furthermore, we release our generated datasets and code in order to provide benchmarks for future work on this topic.
Abstract:Large language models (LLMs) have fundamentally transformed artificial intelligence, catalyzing recent advancements while imposing substantial environmental and computational burdens. We introduce TRAWL (Tensor Reduced and Approximated Weights for Large Language Models), a novel methodology for optimizing LLMs through tensor decomposition. TRAWL leverages diverse strategies to exploit matrices within transformer-based architectures, realizing notable performance enhancements without necessitating retraining. The most significant improvements were observed through a layer-by-layer intervention strategy, particularly when applied to fully connected weights of the final layers, yielding up to 16% enhancement in accuracy without the need for additional data or fine-tuning. These results underscore the importance of targeted and adaptive techniques in increasing the efficiency and effectiveness of large language model optimization, thereby promoting the development of more sustainable and accessible AI systems.
Abstract:Given a time-evolving tensor with missing entries, how can we effectively factorize it for precisely predicting the missing entries? Tensor factorization has been extensively utilized for analyzing various multi-dimensional real-world data. However, existing models for tensor factorization have disregarded the temporal property for tensor factorization while most real-world data are closely related to time. Moreover, they do not address accuracy degradation due to the sparsity of time slices. The essential problems of how to exploit the temporal property for tensor decomposition and consider the sparsity of time slices remain unresolved. In this paper, we propose TATD (Time-Aware Tensor Decomposition), a novel tensor decomposition method for real-world temporal tensors. TATD is designed to exploit temporal dependency and time-varying sparsity of real-world temporal tensors. We propose a new smoothing regularization with Gaussian kernel for modeling time dependency. Moreover, we improve the performance of TATD by considering time-varying sparsity. We design an alternating optimization scheme suitable for temporal tensor factorization with our smoothing regularization. Extensive experiments show that TATD provides the state-of-the-art accuracy for decomposing temporal tensors.