Abstract:Jailbreaking methods, which induce Multi-modal Large Language Models (MLLMs) to output harmful responses, raise significant safety concerns. Among these methods, gradient-based approaches, which use gradients to generate malicious prompts, have been widely studied due to their high success rates in white-box settings, where full access to the model is available. However, these methods have notable limitations: they require white-box access, which is not always feasible, and involve high memory usage. To address scenarios where white-box access is unavailable, attackers often resort to transfer attacks. In transfer attacks, malicious inputs generated using white-box models are applied to black-box models, but this typically results in reduced attack performance. To overcome these challenges, we propose Zer0-Jack, a method that bypasses the need for white-box access by leveraging zeroth-order optimization. We propose patch coordinate descent to efficiently generate malicious image inputs to directly attack black-box MLLMs, which significantly reduces memory usage further. Through extensive experiments, Zer0-Jack achieves a high attack success rate across various models, surpassing previous transfer-based methods and performing comparably with existing white-box jailbreak techniques. Notably, Zer0-Jack achieves a 95\% attack success rate on MiniGPT-4 with the Harmful Behaviors Multi-modal Dataset on a black-box setting, demonstrating its effectiveness. Additionally, we show that Zer0-Jack can directly attack commercial MLLMs such as GPT-4o. Codes are provided in the supplement.
Abstract:This paper introduces SynTraC, the first public image-based traffic signal control dataset, aimed at bridging the gap between simulated environments and real-world traffic management challenges. Unlike traditional datasets for traffic signal control which aim to provide simplified feature vectors like vehicle counts from traffic simulators, SynTraC provides real-style images from the CARLA simulator with annotated features, along with traffic signal states. This image-based dataset comes with diverse real-world scenarios, including varying weather and times of day. Additionally, SynTraC also provides different reward values for advanced traffic signal control algorithms like reinforcement learning. Experiments with SynTraC demonstrate that it is still an open challenge to image-based traffic signal control methods compared with feature-based control methods, indicating our dataset can further guide the development of future algorithms. The code for this paper can be found in \url{https://github.com/DaRL-LibSignal/SynTraC}.SynTraC
Abstract:The Large language models (LLMs) have showcased superior capabilities in sophisticated tasks across various domains, stemming from basic question-answer (QA), they are nowadays used as decision assistants or explainers for unfamiliar content. However, they are not always correct due to the data sparsity in specific domain corpus, or the model's hallucination problems. Given this, how much should we trust the responses from LLMs? This paper presents a novel way to evaluate the uncertainty that captures the directional instability, by constructing a directional graph from entailment probabilities, and we innovatively conduct Random Walk Laplacian given the asymmetric property of a constructed directed graph, then the uncertainty is aggregated by the derived eigenvalues from the Laplacian process. We also provide a way to incorporate the existing work's semantics uncertainty with our proposed layer. Besides, this paper identifies the vagueness issues in the raw response set and proposes an augmentation approach to mitigate such a problem, we conducted extensive empirical experiments and demonstrated the superiority of our proposed solutions.
Abstract:This paper delves into the critical area of deep learning robustness, challenging the conventional belief that classification robustness and explanation robustness in image classification systems are inherently correlated. Through a novel evaluation approach leveraging clustering for efficient assessment of explanation robustness, we demonstrate that enhancing explanation robustness does not necessarily flatten the input loss landscape with respect to explanation loss - contrary to flattened loss landscapes indicating better classification robustness. To deeply investigate this contradiction, a groundbreaking training method designed to adjust the loss landscape with respect to explanation loss is proposed. Through the new training method, we uncover that although such adjustments can impact the robustness of explanations, they do not have an influence on the robustness of classification. These findings not only challenge the prevailing assumption of a strong correlation between the two forms of robustness but also pave new pathways for understanding relationship between loss landscape and explanation loss.
Abstract:The privacy concerns associated with the use of Large Language Models (LLMs) have grown recently with the development of LLMs such as ChatGPT. Differential Privacy (DP) techniques are explored in existing work to mitigate their privacy risks at the cost of generalization degradation. Our paper reveals that the flatness of DP-trained models' loss landscape plays an essential role in the trade-off between their privacy and generalization. We further propose a holistic framework to enforce appropriate weight flatness, which substantially improves model generalization with competitive privacy preservation. It innovates from three coarse-to-grained levels, including perturbation-aware min-max optimization on model weights within a layer, flatness-guided sparse prefix-tuning on weights across layers, and weight knowledge distillation between DP \& non-DP weights copies. Comprehensive experiments of both black-box and white-box scenarios are conducted to demonstrate the effectiveness of our proposal in enhancing generalization and maintaining DP characteristics. For instance, on text classification dataset QNLI, DP-Flat achieves similar performance with non-private full fine-tuning but with DP guarantee under privacy budget $\epsilon=3$, and even better performance given higher privacy budgets. Codes are provided in the supplement.
Abstract:Compartmentalization effectively prevents initial corruption from turning into a successful attack. This paper presents O2C, a pioneering system designed to enforce OS kernel compartmentalization on the fly. It not only provides immediate remediation for sudden threats but also maintains consistent system availability through the enforcement process. O2C is empowered by the newest advancements of the eBPF ecosystem which allows to instrument eBPF programs that perform enforcement actions into the kernel at runtime. O2C takes the lead in embedding a machine learning model into eBPF programs, addressing unique challenges in on-the-fly compartmentalization. Our comprehensive evaluation shows that O2C effectively confines damage within the compartment. Further, we validate that decision tree is optimally suited for O2C owing to its advantages in processing tabular data, its explainable nature, and its compliance with the eBPF ecosystem. Last but not least, O2C is lightweight, showing negligible overhead and excellent sacalability system-wide.
Abstract:The Evidential Regression Network (ERN) represents a novel approach that integrates deep learning with Dempster-Shafer's theory to predict a target and quantify the associated uncertainty. Guided by the underlying theory, specific activation functions must be employed to enforce non-negative values, which is a constraint that compromises model performance by limiting its ability to learn from all samples. This paper provides a theoretical analysis of this limitation and introduces an improvement to overcome it. Initially, we define the region where the models can't effectively learn from the samples. Following this, we thoroughly analyze the ERN and investigate this constraint. Leveraging the insights from our analysis, we address the limitation by introducing a novel regularization term that empowers the ERN to learn from the whole training set. Our extensive experiments substantiate our theoretical findings and demonstrate the effectiveness of the proposed solution.
Abstract:Transportation has greatly benefited the cities' development in the modern civilization process. Intelligent transportation, leveraging advanced computer algorithms, could further increase people's daily commuting efficiency. However, intelligent transportation, as a cross-discipline, often requires practitioners to comprehend complicated algorithms and obscure neural networks, bringing a challenge for the advanced techniques to be trusted and deployed in practical industries. Recognizing the expressiveness of the pre-trained large language models, especially the potential of being augmented with abilities to understand and execute intricate commands, we introduce Open-TI. Serving as a bridge to mitigate the industry-academic gap, Open-TI is an innovative model targeting the goal of Turing Indistinguishable Traffic Intelligence, it is augmented with the capability to harness external traffic analysis packages based on existing conversations. Marking its distinction, Open-TI is the first method capable of conducting exhaustive traffic analysis from scratch - spanning from map data acquisition to the eventual execution in complex simulations. Besides, Open-TI is able to conduct task-specific embodiment like training and adapting the traffic signal control policies (TSC), explore demand optimizations, etc. Furthermore, we explored the viability of LLMs directly serving as control agents, by understanding the expected intentions from Open-TI, we designed an agent-to-agent communication mode to support Open-TI conveying messages to ChatZero (control agent), and then the control agent would choose from the action space to proceed the execution. We eventually provide the formal implementation structure, and the open-ended design invites further community-driven enhancements.
Abstract:Federated learning enables joint training of machine learning models from distributed clients without sharing their local data. One key challenge in federated learning is to handle non-identically distributed data across the clients, which leads to deteriorated model training performances. Prior works in this line of research mainly focus on utilizing last-step global model parameters/gradients or the linear combinations of the past model parameters/gradients, which do not fully exploit the potential of global information from the model training trajectory. In this paper, we propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data heterogeneity issue, which proposes a unique way to better extract the essential global information from the model training trajectory. Specifically, FedPTR allows local clients or the server to optimize an auxiliary (synthetic) dataset that mimics the learning dynamics of the recent model update and utilizes it to project the next-step model trajectory for local training regularization. We conduct rigorous theoretical analysis for our proposed framework under nonconvex stochastic settings to verify its fast convergence under heterogeneous data distributions. Experiments on various benchmark datasets and non-i.i.d. settings validate the effectiveness of our proposed framework.
Abstract:Learning-based low rank approximation algorithms can significantly improve the performance of randomized low rank approximation with sketch matrix. With the learned value and fixed non-zero positions for sketch matrices from learning-based algorithms, these matrices can reduce the test error of low rank approximation significantly. However, there is still no good method to learn non-zero positions as well as overcome the out-of-distribution performance loss. In this work, we introduce two new methods Learning Sparsity and Learning Randomness which try to learn a better sparsity patterns and add randomness to the value of sketch matrix. These two methods can be applied with any learning-based algorithms which use sketch matrix directly. Our experiments show that these two methods can improve the performance of previous learning-based algorithm for both test error and out-of-distribution test error without adding too much complexity.