PECASE, AMU
Abstract:Derivative-free optimization (DFO) is vital in solving complex optimization problems where only noisy function evaluations are available through an oracle. Within this domain, DFO via finite difference (FD) approximation has emerged as a powerful method. Two classical approaches are the Kiefer-Wolfowitz (KW) and simultaneous perturbation stochastic approximation (SPSA) algorithms, which estimate gradients using just two samples in each iteration to conserve samples. However, this approach yields imprecise gradient estimators, necessitating diminishing step sizes to ensure convergence, often resulting in slow optimization progress. In contrast, FD estimators constructed from batch samples approximate gradients more accurately. While gradient descent algorithms using batch-based FD estimators achieve more precise results in each iteration, they require more samples and permit fewer iterations. This raises a fundamental question: which approach is more effective -- KW-style methods or DFO with batch-based FD estimators? This paper conducts a comprehensive experimental comparison among these approaches, examining the fundamental trade-off between gradient estimation accuracy and iteration steps. Through extensive experiments in both low-dimensional and high-dimensional settings, we demonstrate a surprising finding: when an efficient batch-based FD estimator is applied, its corresponding gradient descent algorithm generally shows better performance compared to classical KW and SPSA algorithms in our tested scenarios.
Abstract:Rb-82 is a radioactive isotope widely used for cardiac PET imaging. Despite numerous benefits of 82-Rb, there are several factors that limits its image quality and quantitative accuracy. First, the short half-life of 82-Rb results in noisy dynamic frames. Low signal-to-noise ratio would result in inaccurate and biased image quantification. Noisy dynamic frames also lead to highly noisy parametric images. The noise levels also vary substantially in different dynamic frames due to radiotracer decay and short half-life. Existing denoising methods are not applicable for this task due to the lack of paired training inputs/labels and inability to generalize across varying noise levels. Second, 82-Rb emits high-energy positrons. Compared with other tracers such as 18-F, 82-Rb travels a longer distance before annihilation, which negatively affect image spatial resolution. Here, the goal of this study is to propose a self-supervised method for simultaneous (1) noise-aware dynamic image denoising and (2) positron range correction for 82-Rb cardiac PET imaging. Tested on a series of PET scans from a cohort of normal volunteers, the proposed method produced images with superior visual quality. To demonstrate the improvement in image quantification, we compared image-derived input functions (IDIFs) with arterial input functions (AIFs) from continuous arterial blood samples. The IDIF derived from the proposed method led to lower AUC differences, decreasing from 11.09% to 7.58% on average, compared to the original dynamic frames. The proposed method also improved the quantification of myocardium blood flow (MBF), as validated against 15-O-water scans, with mean MBF differences decreased from 0.43 to 0.09, compared to the original dynamic frames. We also conducted a generalizability experiment on 37 patient scans obtained from a different country using a different scanner.
Abstract:In the field of environmental science, it is crucial to have robust evaluation metrics for large language models to ensure their efficacy and accuracy. We propose EnviroExam, a comprehensive evaluation method designed to assess the knowledge of large language models in the field of environmental science. EnviroExam is based on the curricula of top international universities, covering undergraduate, master's, and doctoral courses, and includes 936 questions across 42 core courses. By conducting 0-shot and 5-shot tests on 31 open-source large language models, EnviroExam reveals the performance differences among these models in the domain of environmental science and provides detailed evaluation standards. The results show that 61.3% of the models passed the 5-shot tests, while 48.39% passed the 0-shot tests. By introducing the coefficient of variation as an indicator, we evaluate the performance of mainstream open-source large language models in environmental science from multiple perspectives, providing effective criteria for selecting and fine-tuning language models in this field. Future research will involve constructing more domain-specific test sets using specialized environmental science textbooks to further enhance the accuracy and specificity of the evaluation.
Abstract:As PET imaging is accompanied by substantial radiation exposure and cancer risk, reducing radiation dose in PET scans is an important topic. Recently, diffusion models have emerged as the new state-of-the-art generative model to generate high-quality samples and have demonstrated strong potential for various tasks in medical imaging. However, it is difficult to extend diffusion models for 3D image reconstructions due to the memory burden. Directly stacking 2D slices together to create 3D image volumes would results in severe inconsistencies between slices. Previous works tried to either applying a penalty term along the z-axis to remove inconsistencies or reconstructing the 3D image volumes with 2 pre-trained perpendicular 2D diffusion models. Nonetheless, these previous methods failed to produce satisfactory results in challenging cases for PET image denoising. In addition to administered dose, the noise-levels in PET images are affected by several other factors in clinical settings, such as scan time, patient size, and weight, etc. Therefore, a method to simultaneously denoise PET images with different noise-levels is needed. Here, we proposed a dose-aware diffusion model for 3D low-dose PET imaging (DDPET) to address these challenges. The proposed DDPET method was tested on 295 patients from three different medical institutions globally with different low-dose levels. These patient data were acquired on three different commercial PET scanners, including Siemens Vision Quadra, Siemens mCT, and United Imaging Healthcare uExplorere. The proposed method demonstrated superior performance over previously proposed diffusion models for 3D imaging problems as well as models proposed for noise-aware medical image denoising. Code is available at: xxx.
Abstract:Modeling difficulty, time-varying model, and uncertain external inputs are the main challenges for energy management of fuel cell hybrid electric vehicles. In the paper, a fuzzy reinforcement learning-based energy management strategy for fuel cell hybrid electric vehicles is proposed to reduce fuel consumption, maintain the batteries' long-term operation, and extend the lifetime of the fuel cells system. Fuzzy Q-learning is a model-free reinforcement learning that can learn itself by interacting with the environment, so there is no need for modeling the fuel cells system. In addition, frequent startup of the fuel cells will reduce the remaining useful life of the fuel cells system. The proposed method suppresses frequent fuel cells startup by considering the penalty for the times of fuel cell startups in the reward of reinforcement learning. Moreover, applying fuzzy logic to approximate the value function in Q-Learning can solve continuous state and action space problems. Finally, a python-based training and testing platform verify the effectiveness and self-learning improvement of the proposed method under conditions of initial state change, model change and driving condition change.
Abstract:In recent years, deep neural networks (DNNs) based approaches have achieved the start-of-the-art performance for music source separation (MSS). Although previous methods have addressed the large receptive field modeling using various methods, the temporal and frequency correlations of the music spectrogram with repeated patterns have not been explicitly explored for the MSS task. In this paper, a temporal-frequency attention module is proposed to model the spectrogram correlations along both temporal and frequency dimensions. Moreover, a multi-scale attention is proposed to effectively capture the correlations for music signal. The experimental results on MUSDB18 dataset show that the proposed method outperforms the existing state-of-the-art systems with 9.51 dB signal-to-distortion ratio (SDR) on separating the vocal stems, which is the primary practical application of MSS.
Abstract:Speech enhancement methods based on deep learning have surpassed traditional methods. While many of these new approaches are operating on the wideband (16kHz) sample rate, a new fullband (48kHz) speech enhancement system is proposed in this paper. Compared to the existing fullband systems that utilizes perceptually motivated features to train the fullband speech enhancement using a single network structure, the proposed system is a two-step system ensuring good fullband speech enhancement quality while backward compatible to the existing wideband systems.
Abstract:Statistical machine learning models should be evaluated and validated before putting to work. Conventional k-fold Monte Carlo Cross-Validation (MCCV) procedure uses a pseudo-random sequence to partition instances into k subsets, which usually causes subsampling bias, inflates generalization errors and jeopardizes the reliability and effectiveness of cross-validation. Based on ordered systematic sampling theory in statistics and low-discrepancy sequence theory in number theory, we propose a new k-fold cross-validation procedure by replacing a pseudo-random sequence with a best-discrepancy sequence, which ensures low subsampling bias and leads to more precise Expected-Prediction-Error estimates. Experiments with 156 benchmark datasets and three classifiers (logistic regression, decision tree and naive bayes) show that in general, our cross-validation procedure can extrude subsampling bias in the MCCV by lowering the EPE around 7.18% and the variances around 26.73%. In comparison, the stratified MCCV can reduce the EPE and variances of the MCCV around 1.58% and 11.85% respectively. The Leave-One-Out (LOO) can lower the EPE around 2.50% but its variances are much higher than the any other CV procedure. The computational time of our cross-validation procedure is just 8.64% of the MCCV, 8.67% of the stratified MCCV and 16.72% of the LOO. Experiments also show that our approach is more beneficial for datasets characterized by relatively small size and large aspect ratio. This makes our approach particularly pertinent when solving bioscience classification problems. Our proposed systematic subsampling technique could be generalized to other machine learning algorithms that involve random subsampling mechanism.