Abstract:Robots are increasingly deployed in dynamic and crowded environments, such as urban areas and shopping malls, where efficient and robust navigation is crucial. Traditional risk-based motion planning algorithms face challenges in such scenarios due to the lack of a well-defined search region, leading to inefficient exploration in irrelevant areas. While bi-directional and multi-directional search strategies can improve efficiency, they still result in significant unnecessary exploration. This article introduces the Neural Adaptive Multi-directional Risk-based Rapidly-exploring Random Tree (NAMR-RRT) to address these limitations. NAMR-RRT integrates neural network-generated heuristic regions to dynamically guide the exploration process, continuously refining the heuristic region and sampling rates during the planning process. This adaptive feature significantly enhances performance compared to neural-based methods with fixed heuristic regions and sampling rates. NAMR-RRT improves planning efficiency, reduces trajectory length, and ensures higher success by focusing the search on promising areas and continuously adjusting to environments. The experiment results from both simulations and real-world applications demonstrate the robustness and effectiveness of our proposed method in navigating dynamic environments. A website about this work is available at https://sites.google.com/view/namr-rrt.
Abstract:Human-robot interaction (HRI) encompasses a wide range of collaborative tasks, with handover being one of the most fundamental. As robots become more integrated into human environments, the potential for service robots to assist in handing objects to humans is increasingly promising. In robot-to-human (R2H) handover, selecting the optimal grasp is crucial for success, as it requires avoiding interference with the humans preferred grasp region and minimizing intrusion into their workspace. Existing methods either inadequately consider geometric information or rely on data-driven approaches, which often struggle to generalize across diverse objects. To address these limitations, we propose a novel zero-shot system that combines semantic and geometric information to generate optimal handover grasps. Our method first identifies grasp regions using semantic knowledge from vision-language models (VLMs) and, by incorporating customized visual prompts, achieves finer granularity in region grounding. A grasp is then selected based on grasp distance and approach angle to maximize human ease and avoid interference. We validate our approach through ablation studies and real-world comparison experiments. Results demonstrate that our system improves handover success rates and provides a more user-preferred interaction experience. Videos, appendixes and more are available at https://sites.google.com/view/vlm-handover/.
Abstract:Accurately predicting the trajectory of surrounding vehicles is a critical challenge for autonomous vehicles. In complex traffic scenarios, there are two significant issues with the current autonomous driving system: the cognitive uncertainty of prediction and the lack of risk awareness, which limit the further development of autonomous driving. To address this challenge, we introduce a novel trajectory prediction model that incorporates insights and principles from driving behavior, ethical decision-making, and risk assessment. Based on joint prediction, our model consists of interaction, intention, and risk assessment modules. The dynamic variation of interaction between vehicles can be comprehensively captured at each timestamp in the interaction module. Based on interaction information, our model considers primary intentions for vehicles to enhance the diversity of trajectory generation. The optimization of predicted trajectories follows the advanced risk-aware decision-making principles. Experimental results are evaluated on the DeepAccident dataset; our approach shows its remarkable prediction performance on normal and accident scenarios and outperforms the state-of-the-art algorithms by at least 28.9\% and 26.5\%, respectively. The proposed model improves the proficiency and adaptability of trajectory prediction in complex traffic scenarios. The code for the proposed model is available at https://sites.google.com/view/ir-prediction.
Abstract:In this article, we present an end-to-end collision avoidance policy based on deep reinforcement learning (DRL) for multi-agent systems, demonstrating encouraging outcomes in real-world applications. In particular, our policy calculates the control commands of the agent based on the raw LiDAR observation. In addition, the number of parameters of the proposed basic model is 140,000, and the size of the parameter file is 3.5 MB, which allows the robot to calculate the actions from the CPU alone. We propose a multi-agent training platform based on a physics-based simulator to further bridge the gap between simulation and the real world. The policy is trained on a policy-gradients-based RL algorithm in a dense and messy training environment. A novel reward function is introduced to address the issue of agents choosing suboptimal actions in some common scenarios. Although the data used for training is exclusively from the simulation platform, the policy can be successfully transferred and deployed in real-world robots. Finally, our policy effectively responds to intentional obstructions and avoids collisions. The website is available at \url{https://sites.google.com/view/xingrong2024efficient/%E9%A6%96%E9%A1%B5}.
Abstract:Trajectory planning for quadrotors in cluttered environments has been challenging in recent years. While many trajectory planning frameworks have been successful, there still exists potential for improvements, particularly in enhancing the speed of generating efficient trajectories. In this paper, we present a novel hierarchical trajectory planning framework to reduce computational time and memory usage called MINER-RRT*, which consists of two main components. First, we propose a sampling-based path planning method boosted by neural networks, where the predicted heuristic region accelerates the convergence of rapidly-exploring random trees. Second, we utilize the optimal conditions derived from the quadrotor's differential flatness properties to construct polynomial trajectories that minimize control effort in multiple stages. Extensive simulation and real-world experimental results demonstrate that, compared to several state-of-the-art (SOTA) approaches, our method can generate high-quality trajectories with better performance in 3D cluttered environments.
Abstract:Safety-critical intelligent cyber-physical systems, such as quadrotor unmanned aerial vehicles (UAVs), are vulnerable to different types of cyber attacks, and the absence of timely and accurate attack detection can lead to severe consequences. When UAVs are engaged in large outdoor maneuvering flights, their system constitutes highly nonlinear dynamics that include non-Gaussian noises. Therefore, the commonly employed traditional statistics-based and emerging learning-based attack detection methods do not yield satisfactory results. In response to the above challenges, we propose QUADFormer, a novel Quadrotor UAV Attack Detection framework with transFormer-based architecture. This framework includes a residue generator designed to generate a residue sequence sensitive to anomalies. Subsequently, this sequence is fed into a transformer structure with disparity in correlation to specifically learn its statistical characteristics for the purpose of classification and attack detection. Finally, we design an alert module to ensure the safe execution of tasks by UAVs under attack conditions. We conduct extensive simulations and real-world experiments, and the results show that our method has achieved superior detection performance compared with many state-of-the-art methods.
Abstract:Automated Cobb angle estimation based on X-ray images plays an important role in scoliosis diagnosis, treatment, and progression surveillance. The inadequate feature extraction and the noise in X-ray images are the main difficulties of automated Cobb angle estimation, and it is challenging to ensure that the calculated Cobb angle meets clinical requirements. To address these problems, we propose a Landmark-aware Network named LaNet with three components, Feature Robustness Enhancement Module (FREM), Landmark-aware Objective Function (LOF), and Cobb Angle Calculation Method (CACM), for automated Cobb angle estimation in this paper. To enhance feature extraction, FREM is designed to explore geometric and semantic constraints among landmarks, thus geometric and semantic correlations between landmarks are globally modeled, and robust landmark-based features are extracted. Furthermore, to mitigate the effect of background noise on landmark localization, LOF is proposed to focus more on the foreground near the landmarks and ignore irrelevant background pixels by exploiting category prior information of landmarks. In addition, we also advance CACM to locate the bending segments first and then calculate the Cobb angle within the bending segment, which facilitates the calculation of the clinical standardized Cobb angle. The experiment results on the AASCE dataset demonstrate that our proposed LaNet can significantly improve the Cobb angle estimation performance and outperform other state-of-the-art methods.
Abstract:Alzheimer's disease (AD) is the fifth-leading cause of death among Americans aged 65 and older. Screening and early detection of AD and related dementias (ADRD) are critical for timely intervention and for identifying clinical trial participants. The widespread adoption of electronic health records (EHRs) offers an important resource for developing ADRD screening tools such as machine learning based predictive models. Recent advancements in large language models (LLMs) demonstrate their unprecedented capability of encoding knowledge and performing reasoning, which offers them strong potential for enhancing risk prediction. This paper proposes a novel pipeline that augments risk prediction by leveraging the few-shot inference power of LLMs to make predictions on cases where traditional supervised learning methods (SLs) may not excel. Specifically, we develop a collaborative pipeline that combines SLs and LLMs via a confidence-driven decision-making mechanism, leveraging the strengths of SLs in clear-cut cases and LLMs in more complex scenarios. We evaluate this pipeline using a real-world EHR data warehouse from Oregon Health \& Science University (OHSU) Hospital, encompassing EHRs from over 2.5 million patients and more than 20 million patient encounters. Our results show that our proposed approach effectively combines the power of SLs and LLMs, offering significant improvements in predictive performance. This advancement holds promise for revolutionizing ADRD screening and early detection practices, with potential implications for better strategies of patient management and thus improving healthcare.
Abstract:The robotic autonomous luggage trolley collection system employs robots to gather and transport scattered luggage trolleys at airports. However, existing methods for detecting and locating these luggage trolleys often fail when they are not fully visible. To address this, we introduce the Hierarchical Progressive Perception System (HPPS), which enhances the detection and localization of luggage trolleys under partial occlusion. The HPPS processes the luggage trolley's position and orientation separately, which requires only RGB images for labeling and training, eliminating the need for 3D coordinates and alignment. The HPPS can accurately determine the position of the luggage trolley with just one well-detected keypoint and estimate the luggage trolley's orientation when it is partially occluded. Once the luggage trolley's initial pose is detected, HPPS updates this information continuously to refine its accuracy until the robot begins grasping. The experiments on detection and localization demonstrate that HPPS is more reliable under partial occlusion compared to existing methods. Its effectiveness and robustness have also been confirmed through practical tests in actual luggage trolley collection tasks. A website about this work is available at HPPS.
Abstract:In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to address this challenge. Known for their strong abilities in summarizing texts, LLMs are seen as a potential tool to improve the analysis of scientific literature. However, existing LLMs have their own limits. Scientific literature often includes a wide range of multimodal elements, such as molecular structure, tables, and charts, which are hard for text-focused LLMs to understand and analyze. This issue points to the urgent need for new solutions that can fully understand and analyze multimodal content in scientific literature. To answer this demand, we present Uni-SMART (Universal Science Multimodal Analysis and Research Transformer), an innovative model designed for in-depth understanding of multimodal scientific literature. Through rigorous quantitative evaluation across several domains, Uni-SMART demonstrates superior performance over leading text-focused LLMs. Furthermore, our exploration extends to practical applications, including patent infringement detection and nuanced analysis of charts. These applications not only highlight Uni-SMART's adaptability but also its potential to revolutionize how we interact with scientific literature.