Abstract:For high-level geo-spatial applications and intelligent robotics, accurate global pose information is of crucial importance. Map-aided localization is an important and universal approach to overcome the limitations of global navigation satellite system (GNSS) in challenging environments. However, current solutions face challenges in terms of mapping flexibility, storage burden and re-localization performance. In this work, we present SF-Loc, a lightweight visual mapping and map-aided localization system, whose core idea is the map representation based on sparse frames with dense (though downsampled) depth, termed as visual structure frames. In the mapping phase, multi-sensor dense bundle adjustment (MS-DBA) is applied to construct geo-referenced visual structure frames. The local co-visbility is checked to keep the map sparsity and achieve incremental mapping. In the localization phase, coarse-to-fine vision-based localization is performed, in which multi-frame information and the map distribution are fully integrated. To be specific, the concept of spatially smoothed similarity (SSS) is proposed to overcome the place ambiguity, and pairwise frame matching is applied for efficient and robust pose estimation. Experimental results on both public and self-made datasets verify the effectiveness of the system. In complex urban road scenarios, the map size is down to 3 MB per kilometer and stable decimeter-level re-localization can be achieved. The code will be made open-source soon (https://github.com/GREAT-WHU/SF-Loc).
Abstract:Visual-inertial systems have been widely studied and applied in the last two decades, mainly due to their low cost and power consumption, small footprint, and high availability. Such a trend simultaneously leads to a large amount of visual-inertial calibration methods being presented, as accurate spatiotemporal parameters between sensors are a prerequisite for visual-inertial fusion. In our previous work, i.e., iKalibr, a continuous-time-based visual-inertial calibration method was proposed as a part of one-shot multi-sensor resilient spatiotemporal calibration. While requiring no artificial target brings considerable convenience, computationally expensive pose estimation is demanded in initialization and batch optimization, limiting its availability. Fortunately, this could be vastly improved for the RGBDs with additional depth information, by employing mapping-free ego-velocity estimation instead of mapping-based pose estimation. In this paper, we present the continuous-time ego-velocity estimation-based RGBD-inertial spatiotemporal calibration, termed as iKalibr-RGBD, which is also targetless but computationally efficient. The general pipeline of iKalibr-RGBD is inherited from iKalibr, composed of a rigorous initialization procedure and several continuous-time batch optimizations. The implementation of iKalibr-RGBD is open-sourced at (https://github.com/Unsigned-Long/iKalibr) to benefit the research community.
Abstract:Aided inertial navigation system (INS), typically consisting of an inertial measurement unit (IMU) and an exteroceptive sensor, has been widely accepted as a feasible solution for navigation. Compared with vision-aided and LiDAR-aided INS, radar-aided INS could achieve better performance in adverse weather conditions since the radar utilizes low-frequency measuring signals with less attenuation effect in atmospheric gases and rain. For such a radar-aided INS, accurate spatiotemporal transformation is a fundamental prerequisite to achieving optimal information fusion. In this work, we present RIs-Calib: a spatiotemporal calibrator for multiple 3D radars and IMUs based on continuous-time estimation, which enables accurate spatiotemporal calibration and does not require any additional artificial infrastructure or prior knowledge. Our approach starts with a rigorous and robust procedure for state initialization, followed by batch optimizations, where all parameters can be refined to global optimal states steadily. We validate and evaluate RIs-Calib on both simulated and real-world experiments, and the results demonstrate that RIs-Calib is capable of accurate and consistent calibration. We open-source our implementations at (https://github.com/Unsigned-Long/RIs-Calib) to benefit the research community.
Abstract:The integrated inertial system, typically integrating an IMU and an exteroceptive sensor such as radar, LiDAR, and camera, has been widely accepted and applied in modern robotic applications for ego-motion estimation, motion control, or autonomous exploration. To improve system accuracy, robustness, and further usability, both multiple and various sensors are generally resiliently integrated, which benefits the system performance regarding failure tolerance, perception capability, and environment compatibility. For such systems, accurate and consistent spatiotemporal calibration is required to maintain a unique spatiotemporal framework for multi-sensor fusion. Considering most existing calibration methods (i) are generally oriented to specific integrated inertial systems, (ii) often only focus on spatial determination, (iii) usually require artificial targets, lacking convenience and usability, we propose iKalibr: a unified targetless spatiotemporal calibration framework for resilient integrated inertial systems, which overcomes the above issues, and enables both accurate and consistent calibration. Altogether four commonly employed sensors are supported in iKalibr currently, namely IMU, radar, LiDAR, and camera. The proposed method starts with a rigorous and efficient dynamic initialization, where all parameters in the estimator would be accurately recovered. Following that, several continuous-time-based batch optimizations would be carried out to refine initialized parameters to global optimal ones. Sufficient real-world experiments were conducted to verify the feasibility and evaluate the calibration performance of iKalibr. The results demonstrate that iKalibr can achieve accurate resilient spatiotemporal calibration. We open-source our implementations at (https://github.com/Unsigned-Long/iKalibr) to benefit the research community.
Abstract:Visual simultaneous localization and mapping (VSLAM) has broad applications, with state-of-the-art methods leveraging deep neural networks for better robustness and applicability. However, there is a lack of research in fusing these learning-based methods with multi-sensor information, which could be indispensable to push related applications to large-scale and complex scenarios. In this paper, we tightly integrate the trainable deep dense bundle adjustment (DBA) with multi-sensor information through a factor graph. In the framework, recurrent optical flow and DBA are performed among sequential images. The Hessian information derived from DBA is fed into a generic factor graph for multi-sensor fusion, which employs a sliding window and supports probabilistic marginalization. A pipeline for visual-inertial integration is firstly developed, which provides the minimum ability of metric-scale localization and mapping. Furthermore, other sensors (e.g., global navigation satellite system) are integrated for driftless and geo-referencing functionality. Extensive tests are conducted on both public datasets and self-collected datasets. The results validate the superior localization performance of our approach, which enables real-time dense mapping in large-scale environments. The code has been made open-source (https://github.com/GREAT-WHU/DBA-Fusion).
Abstract:Monocular visual-inertial odometry (VIO) is a low-cost solution to provide high-accuracy, low-drifting pose estimation. However, it has been meeting challenges in vehicular scenarios due to limited dynamics and lack of stable features. In this paper, we propose Ground-VIO, which utilizes ground features and the specific camera-ground geometry to enhance monocular VIO performance in realistic road environments. In the method, the camera-ground geometry is modeled with vehicle-centered parameters and integrated into an optimization-based VIO framework. These parameters could be calibrated online and simultaneously improve the odometry accuracy by providing stable scale-awareness. Besides, a specially designed visual front-end is developed to stably extract and track ground features via the inverse perspective mapping (IPM) technique. Both simulation tests and real-world experiments are conducted to verify the effectiveness of the proposed method. The results show that our implementation could dramatically improve monocular VIO accuracy in vehicular scenarios, achieving comparable or even better performance than state-of-art stereo VIO solutions. The system could also be used for the auto-calibration of IPM which is widely used in vehicle perception. A toolkit for ground feature processing, together with the experimental datasets, would be made open-source (https://github.com/GREAT-WHU/gv_tools).
Abstract:The application of cross-dataset training in object detection tasks is complicated because the inconsistency in the category range across datasets transforms fully supervised learning into semi-supervised learning. To address this problem, recent studies focus on the generation of high-quality missing annotations. In this study, we first point out that it is not enough to generate high-quality annotations using a single model, which only looks once for annotations. Through detailed experimental analyses, we further conclude that hard-label training is conducive to generating high-recall annotations, while soft-label training tends to obtain high-precision annotations. Inspired by the aspects mentioned above, we propose a dynamic supervisor framework that updates the annotations multiple times through multiple-updated submodels trained using hard and soft labels. In the final generated annotations, both recall and precision improve significantly through the integration of hard-label training with soft-label training. Extensive experiments conducted on various dataset combination settings support our analyses and demonstrate the superior performance of the proposed dynamic supervisor.