Abstract:Machine learning (ML) systems that guarantee security and privacy often rely on Fully Homomorphic Encryption (FHE) as a cornerstone technique, enabling computations on encrypted data without exposing sensitive information. However, a critical limitation of FHE is its computational inefficiency, making it impractical for large-scale applications. In this work, we propose \textit{Nemesis}, a framework that accelerates FHE-based systems without compromising accuracy or security. The design of Nemesis is inspired by Rache (SIGMOD'23), which introduced a caching mechanism for encrypted integers and scalars. Nemesis extends this idea with more advanced caching techniques and mathematical tools, enabling efficient operations over multi-slot FHE schemes and overcoming Rache's limitations to support general plaintext structures. We formally prove the security of Nemesis under standard cryptographic assumptions and evaluate its performance extensively on widely used datasets, including MNIST, FashionMNIST, and CIFAR-10. Experimental results show that Nemesis significantly reduces the computational overhead of FHE-based ML systems, paving the way for broader adoption of privacy-preserving technologies.
Abstract:The increasing prevalence of high-dimensional data demands efficient and scalable compression methods to support modern applications. However, existing techniques like PCA and Autoencoders often rely on auxiliary metadata or intricate architectures, limiting their practicality for streaming or infinite datasets. In this paper, we introduce a stateless compression framework that leverages polynomial representations to achieve compact, interpretable, and scalable data reduction. By eliminating the need for auxiliary data, our method supports direct algebraic operations in the compressed domain while minimizing error growth during computations. Through extensive experiments on synthetic and real-world datasets, we show that our approach achieves high compression ratios without compromising reconstruction accuracy, all while maintaining simplicity and scalability.
Abstract:Multimodal tasks, such as image-text retrieval and generation, require embedding data from diverse modalities into a shared representation space. Aligning embeddings from heterogeneous sources while preserving shared and modality-specific information is a fundamental challenge. This paper provides an initial attempt to integrate algebraic geometry into multimodal representation learning, offering a foundational perspective for further exploration. We model image and text data as polynomials over discrete rings, \( \mathbb{Z}_{256}[x] \) and \( \mathbb{Z}_{|V|}[x] \), respectively, enabling the use of algebraic tools like fiber products to analyze alignment properties. To accommodate real-world variability, we extend the classical fiber product to an approximate fiber product with a tolerance parameter \( \epsilon \), balancing precision and noise tolerance. We study its dependence on \( \epsilon \), revealing asymptotic behavior, robustness to perturbations, and sensitivity to embedding dimensionality. Additionally, we propose a decomposition of the shared embedding space into orthogonal subspaces, \( Z = Z_s \oplus Z_I \oplus Z_T \), where \( Z_s \) captures shared semantics, and \( Z_I \), \( Z_T \) encode modality-specific features. This decomposition is geometrically interpreted via manifolds and fiber bundles, offering insights into embedding structure and optimization. This framework establishes a principled foundation for analyzing multimodal alignment, uncovering connections between robustness, dimensionality allocation, and algebraic structure. It lays the groundwork for further research on embedding spaces in multimodal learning using algebraic geometry.
Abstract:The proliferation of fake news on digital platforms has underscored the need for robust and scalable detection mechanisms. Traditional methods often fall short in handling large and diverse datasets due to limitations in scalability and accuracy. In this paper, we propose NexusIndex, a novel framework and model that enhances fake news detection by integrating advanced language models, an innovative FAISSNexusIndex layer, and attention mechanisms. Our approach leverages multi-model embeddings to capture rich contextual and semantic nuances, significantly improving text interpretation and classification accuracy. By transforming articles into high-dimensional embeddings and indexing them efficiently, NexusIndex facilitates rapid similarity searches across extensive collections of news articles. The FAISSNexusIndex layer further optimizes this process, enabling real-time detection and enhancing the system's scalability and performance. Our experimental results demonstrate that NexusIndex outperforms state-of-the-art methods in efficiency and accuracy across diverse datasets.
Abstract:Activity recognition is a challenging task due to the large scale of trajectory data and the need for prompt and efficient processing. Existing methods have attempted to mitigate this problem by employing traditional LSTM architectures, but these approaches often suffer from inefficiencies in processing large datasets. In response to this challenge, we propose VecLSTM, a novel framework that enhances the performance and efficiency of LSTM-based neural networks. Unlike conventional approaches, VecLSTM incorporates vectorization layers, leveraging optimized mathematical operations to process input sequences more efficiently. We have implemented VecLSTM and incorporated it into the MySQL database. To evaluate the effectiveness of VecLSTM, we compare its performance against a conventional LSTM model using a dataset comprising 1,467,652 samples with seven unique labels. Experimental results demonstrate superior accuracy and efficiency compared to the state-of-the-art, with VecLSTM achieving a validation accuracy of 85.57\%, a test accuracy of 85.47\%, and a weighted F1-score of 0.86. Furthermore, VecLSTM significantly reduces training time, offering a 26.2\% reduction compared to traditional LSTM models.
Abstract:Traditional retrieval methods have been essential for assessing document similarity but struggle with capturing semantic nuances. Despite advancements in latent semantic analysis (LSA) and deep learning, achieving comprehensive semantic understanding and accurate retrieval remains challenging due to high dimensionality and semantic gaps. The above challenges call for new techniques to effectively reduce the dimensions and close the semantic gaps. To this end, we propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval. By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy. Experiments on real-world datasets show that VectorSearch outperforms baseline metrics, demonstrating its efficacy for large-scale retrieval tasks.
Abstract:One of the most common operations in multimodal scientific data management is searching for the $k$ most similar items (or, $k$-nearest neighbors, KNN) from the database after being provided a new item. Although recent advances of multimodal machine learning models offer a \textit{semantic} index, the so-called \textit{embedding vectors} mapped from the original multimodal data, the dimension of the resulting embedding vectors are usually on the order of hundreds or a thousand, which are impractically high for time-sensitive scientific applications. This work proposes to reduce the dimensionality of the output embedding vectors such that the set of top-$k$ nearest neighbors do not change in the lower-dimensional space, namely Order-Preserving Dimension Reduction (OPDR). In order to develop such an OPDR method, our central hypothesis is that by analyzing the intrinsic relationship among key parameters during the dimension-reduction map, a quantitative function may be constructed to reveal the correlation between the target (lower) dimensionality and other variables. To demonstrate the hypothesis, this paper first defines a formal measure function to quantify the KNN similarity for a specific vector, then extends the measure into an aggregate accuracy of the global metric spaces, and finally derives a closed-form function between the target (lower) dimensionality and other variables. We incorporate the closed-function into popular dimension-reduction methods, various distance metrics, and embedding models.
Abstract:Skin lesion segmentation is key for early skin cancer detection. Challenges in automatic segmentation from dermoscopic images include variations in color, texture, and artifacts of indistinct lesion boundaries. Deep learning methods like CNNs and U-Net have shown promise in addressing these issues. To further aid early diagnosis, especially on mobile devices with limited computing power, we present MUCM-Net. This efficient model combines Mamba State-Space Models with our UCM-Net architecture for improved feature learning and segmentation. MUCM-Net's Mamba-UCM Layer is optimized for mobile deployment, offering high accuracy with low computational needs. Tested on ISIC datasets, it outperforms other methods in accuracy and computational efficiency, making it a scalable tool for early detection in settings with limited resources. Our MUCM-Net source code is available for research and collaboration, supporting advances in mobile health diagnostics and the fight against skin cancer. In order to facilitate accessibility and further research in the field, the MUCM-Net source code is https://github.com/chunyuyuan/MUCM-Net
Abstract:In the field of environmental science, it is crucial to have robust evaluation metrics for large language models to ensure their efficacy and accuracy. We propose EnviroExam, a comprehensive evaluation method designed to assess the knowledge of large language models in the field of environmental science. EnviroExam is based on the curricula of top international universities, covering undergraduate, master's, and doctoral courses, and includes 936 questions across 42 core courses. By conducting 0-shot and 5-shot tests on 31 open-source large language models, EnviroExam reveals the performance differences among these models in the domain of environmental science and provides detailed evaluation standards. The results show that 61.3% of the models passed the 5-shot tests, while 48.39% passed the 0-shot tests. By introducing the coefficient of variation as an indicator, we evaluate the performance of mainstream open-source large language models in environmental science from multiple perspectives, providing effective criteria for selecting and fine-tuning language models in this field. Future research will involve constructing more domain-specific test sets using specialized environmental science textbooks to further enhance the accuracy and specificity of the evaluation.
Abstract:Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices while preserving data privacy. Ensuring the integrity and traceability of data across these distributed environments, however, remains a critical challenge. The ability to create transparent artificial intelligence, such as detailing the training process of a machine learning model, has become an increasingly prominent concern due to the large number of sensitive (hyper)parameters it utilizes; thus, it is imperative to strike a reasonable balance between openness and the need to protect sensitive information. In this paper, we propose one of the first approaches to enhance data provenance and model transparency in federated learning systems. Our methodology leverages a combination of cryptographic techniques and efficient model management to track the transformation of data throughout the FL process, and seeks to increase the reproducibility and trustworthiness of a trained FL model. We demonstrate the effectiveness of our approach through experimental evaluations on diverse FL scenarios, showcasing its ability to tackle accountability and explainability across the board. Our findings show that our system can greatly enhance data transparency in various FL environments by storing chained cryptographic hashes and client model snapshots in our proposed design for data decoupled FL. This is made possible by also employing multiple optimization techniques which enables comprehensive data provenance without imposing substantial computational loads. Extensive experimental results suggest that integrating a database subsystem into federated learning systems can improve data provenance in an efficient manner, encouraging secure FL adoption in privacy-sensitive applications and paving the way for future advancements in FL transparency and security features.