Abstract:Text-to-image synthesis (T2I) has advanced remarkably with the emergence of large-scale diffusion models. In the conventional setup, the text prompt provides explicit, user-defined guidance, directing the generation process by denoising a randomly sampled Gaussian noise. In this work, we reveal that the often-overlooked noise itself encodes inherent generative tendencies, acting as a "silent prompt" that implicitly guides the output. This implicit guidance, embedded in the noise scheduler design of diffusion model formulations and their training stages, generalizes across a wide range of T2I models and backbones. Building on this insight, we introduce NoiseQuery, a novel strategy that selects optimal initial noise from a pre-built noise library to meet diverse user needs. Our approach not only enhances high-level semantic alignment with text prompts, but also allows for nuanced adjustments of low-level visual attributes, such as texture, sharpness, shape, and color, which are typically challenging to control through text alone. Extensive experiments across various models and target attributes demonstrate the strong performance and zero-shot transferability of our approach, requiring no additional optimization.
Abstract:Originating from the diffusion phenomenon in physics, which describes the random movement and collisions of particles, diffusion generative models simulate a random walk in the data space along the denoising trajectory. This allows information to diffuse across regions, yielding harmonious outcomes. However, the chaotic and disordered nature of information diffusion in diffusion models often results in undesired interference between image regions, causing degraded detail preservation and contextual inconsistency. In this work, we address these challenges by reframing disordered diffusion as a powerful tool for text-vision-to-image generation (TV2I) tasks, achieving pixel-level condition fidelity while maintaining visual and semantic coherence throughout the image. We first introduce Cyclic One-Way Diffusion (COW), which provides an efficient unidirectional diffusion framework for precise information transfer while minimizing disruptive interference. Building on COW, we further propose Selective One-Way Diffusion (SOW), which utilizes Multimodal Large Language Models (MLLMs) to clarify the semantic and spatial relationships within the image. Based on these insights, SOW combines attention mechanisms to dynamically regulate the direction and intensity of diffusion according to contextual relationships. Extensive experiments demonstrate the untapped potential of controlled information diffusion, offering a path to more adaptive and versatile generative models in a learning-free manner.
Abstract:Compositionality is a critical capability in Text-to-Image (T2I) models, as it reflects their ability to understand and combine multiple concepts from text descriptions. Existing evaluations of compositional capability rely heavily on human-designed text prompts or fixed templates, limiting their diversity and complexity, and yielding low discriminative power. We propose ConceptMix, a scalable, controllable, and customizable benchmark which automatically evaluates compositional generation ability of T2I models. This is done in two stages. First, ConceptMix generates the text prompts: concretely, using categories of visual concepts (e.g., objects, colors, shapes, spatial relationships), it randomly samples an object and k-tuples of visual concepts, then uses GPT4-o to generate text prompts for image generation based on these sampled concepts. Second, ConceptMix evaluates the images generated in response to these prompts: concretely, it checks how many of the k concepts actually appeared in the image by generating one question per visual concept and using a strong VLM to answer them. Through administering ConceptMix to a diverse set of T2I models (proprietary as well as open ones) using increasing values of k, we show that our ConceptMix has higher discrimination power than earlier benchmarks. Specifically, ConceptMix reveals that the performance of several models, especially open models, drops dramatically with increased k. Importantly, it also provides insight into the lack of prompt diversity in widely-used training datasets. Additionally, we conduct extensive human studies to validate the design of ConceptMix and compare our automatic grading with human judgement. We hope it will guide future T2I model development.
Abstract:Dataset distillation has emerged as a strategy to overcome the hurdles associated with large datasets by learning a compact set of synthetic data that retains essential information from the original dataset. While distilled data can be used to train high performing models, little is understood about how the information is stored. In this study, we posit and answer three questions about the behavior, representativeness, and point-wise information content of distilled data. We reveal distilled data cannot serve as a substitute for real data during training outside the standard evaluation setting for dataset distillation. Additionally, the distillation process retains high task performance by compressing information related to the early training dynamics of real models. Finally, we provide an framework for interpreting distilled data and reveal that individual distilled data points contain meaningful semantic information. This investigation sheds light on the intricate nature of distilled data, providing a better understanding on how they can be effectively utilized.
Abstract:Generative AI capabilities have grown substantially in recent years, raising renewed concerns about potential malicious use of generated data, or "deep fakes". However, deep fake datasets have not kept up with generative AI advancements sufficiently to enable the development of deep fake detection technology which can meaningfully alert human users in real-world settings. Existing datasets typically use GAN-based models and introduce spurious correlations by always editing similar face regions. To counteract the shortcomings, we introduce DETER, a large-scale dataset for DETEcting edited image Regions and deterring modern advanced generative manipulations. DETER includes 300,000 images manipulated by four state-of-the-art generators with three editing operations: face swapping (a standard coarse image manipulation), inpainting (a novel manipulation for deep fake datasets), and attribute editing (a subtle fine-grained manipulation). While face swapping and attribute editing are performed on similar face regions such as eyes and nose, the inpainting operation can be performed on random image regions, removing the spurious correlations of previous datasets. Careful image post-processing is performed to ensure deep fakes in DETER look realistic, and human studies confirm that human deep fake detection rate on DETER is 20.4% lower than on other fake datasets. Equipped with the dataset, we conduct extensive experiments and break-down analysis using our rich annotations and improved benchmark protocols, revealing future directions and the next set of challenges in developing reliable regional fake detection models.
Abstract:The goal of 2D human pose estimation (HPE) is to localize anatomical landmarks, given an image of a person in a pose. SOTA techniques make use of thousands of labeled figures (finetuning transformers or training deep CNNs), acquired using labor-intensive crowdsourcing. On the other hand, self-supervised methods re-frame the HPE task as a reconstruction problem, enabling them to leverage the vast amount of unlabeled visual data, though at the present cost of accuracy. In this work, we explore ways to improve self-supervised HPE. We (1) analyze the relationship between reconstruction quality and pose estimation accuracy, (2) develop a model pipeline that outperforms the baseline which inspired our work, using less than one-third the amount of training data, and (3) offer a new metric suitable for self-supervised settings that measures the consistency of predicted body part length proportions. We show that a combination of well-engineered reconstruction losses and inductive priors can help coordinate pose learning alongside reconstruction in a self-supervised paradigm.
Abstract:While the current trend in the generative field is scaling up towards larger models and more training data for generalized domain representations, we go the opposite direction in this work by synthesizing unseen domain images without additional training. We do so via latent sampling and geometric optimization using pre-trained and frozen Denoising Diffusion Probabilistic Models (DDPMs) on single-domain datasets. Our key observation is that DDPMs pre-trained even just on single-domain images are already equipped with sufficient representation abilities to reconstruct arbitrary images from the inverted latent encoding following bi-directional deterministic diffusion and denoising trajectories. This motivates us to investigate the statistical and geometric behaviors of the Out-Of-Distribution (OOD) samples from unseen image domains in the latent spaces along the denoising chain. Notably, we theoretically and empirically show that the inverted OOD samples also establish Gaussians that are distinguishable from the original In-Domain (ID) samples in the intermediate latent spaces, which allows us to sample from them directly. Geometrical domain-specific and model-dependent information of the unseen subspace (e.g., sample-wise distance and angles) is used to further optimize the sampled OOD latent encodings from the estimated Gaussian prior. We conduct extensive analysis and experiments using pre-trained diffusion models (DDPM, iDDPM) on different datasets (AFHQ, CelebA-HQ, LSUN-Church, and LSUN-Bedroom), proving the effectiveness of this novel perspective to explore and re-think the diffusion models' data synthesis generalization ability.
Abstract:The task of out-of-distribution (OOD) detection is notoriously ill-defined. Earlier works focused on new-class detection, aiming to identify label-altering data distribution shifts, also known as "semantic shift." However, recent works argue for a focus on failure detection, expanding the OOD evaluation framework to account for label-preserving data distribution shifts, also known as "covariate shift." Intriguingly, under this new framework, complex OOD detectors that were previously considered state-of-the-art now perform similarly to, or even worse than the simple maximum softmax probability baseline. This raises the question: what are the latest OOD detectors actually detecting? Deciphering the behavior of OOD detection algorithms requires evaluation datasets that decouples semantic shift and covariate shift. To aid our investigations, we present ImageNet-OOD, a clean semantic shift dataset that minimizes the interference of covariate shift. Through comprehensive experiments, we show that OOD detectors are more sensitive to covariate shift than to semantic shift, and the benefits of recent OOD detection algorithms on semantic shift detection is minimal. Our dataset and analyses provide important insights for guiding the design of future OOD detectors.
Abstract:Dataset distillation methods offer the promise of reducing a large-scale dataset down to a significantly smaller set of (potentially synthetic) training examples, which preserve sufficient information for training a new model from scratch. So far dataset distillation methods have been developed for image classification. However, with the rise in capabilities of vision-language models, and especially given the scale of datasets necessary to train these models, the time is ripe to expand dataset distillation methods beyond image classification. In this work, we take the first steps towards this goal by expanding on the idea of trajectory matching to create a distillation method for vision-language datasets. The key challenge is that vision-language datasets do not have a set of discrete classes. To overcome this, our proposed multimodal dataset distillation method jointly distill the images and their corresponding language descriptions in a contrastive formulation. Since there are no existing baselines, we compare our approach to three coreset selection methods (strategic subsampling of the training dataset), which we adapt to the vision-language setting. We demonstrate significant improvements on the challenging Flickr30K and COCO retrieval benchmark: the best coreset selection method which selects 1000 image-text pairs for training is able to achieve only 5.6% image-to-text retrieval accuracy (recall@1); in contrast, our dataset distillation approach almost doubles that with just 100 (an order of magnitude fewer) training pairs.
Abstract:A new class of tools, colloquially called generative AI, can produce high-quality artistic media for visual arts, concept art, music, fiction, literature, video, and animation. The generative capabilities of these tools are likely to fundamentally alter the creative processes by which creators formulate ideas and put them into production. As creativity is reimagined, so too may be many sectors of society. Understanding the impact of generative AI - and making policy decisions around it - requires new interdisciplinary scientific inquiry into culture, economics, law, algorithms, and the interaction of technology and creativity. We argue that generative AI is not the harbinger of art's demise, but rather is a new medium with its own distinct affordances. In this vein, we consider the impacts of this new medium on creators across four themes: aesthetics and culture, legal questions of ownership and credit, the future of creative work, and impacts on the contemporary media ecosystem. Across these themes, we highlight key research questions and directions to inform policy and beneficial uses of the technology.