Abstract:Widely deployed large language models (LLMs) can produce convincing yet incorrect outputs, potentially misleading users who may rely on them as if they were correct. To reduce such overreliance, there have been calls for LLMs to communicate their uncertainty to end users. However, there has been little empirical work examining how users perceive and act upon LLMs' expressions of uncertainty. We explore this question through a large-scale, pre-registered, human-subject experiment (N=404) in which participants answer medical questions with or without access to responses from a fictional LLM-infused search engine. Using both behavioral and self-reported measures, we examine how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance. We find that first-person expressions (e.g., "I'm not sure, but...") decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy. An exploratory analysis suggests that this increase can be attributed to reduced (but not fully eliminated) overreliance on incorrect answers. While we observe similar effects for uncertainty expressed from a general perspective (e.g., "It's not clear, but..."), these effects are weaker and not statistically significant. Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters. This highlights the importance of user testing before deploying LLMs at scale.
Abstract:Via thousands of papers in Explainable AI (XAI), attention maps \cite{vaswani2017attention} and feature attribution maps \cite{bansal2020sam} have been established as a common means for finding how important each input feature is to an AI's decisions. It is an interesting, unexplored question whether allowing users to edit the feature importance at test time would improve a human-AI team's accuracy on downstream tasks. In this paper, we address this question by leveraging CHM-Corr, a state-of-the-art, ante-hoc explainable classifier \cite{taesiri2022visual} that first predicts patch-wise correspondences between the input and training-set images, and then base on them to make classification decisions. We build CHM-Corr++, an interactive interface for CHM-Corr, enabling users to edit the feature attribution map provided by CHM-Corr and observe updated model decisions. Via CHM-Corr++, users can gain insights into if, when, and how the model changes its outputs, improving their understanding beyond static explanations. However, our user study with 18 users who performed 1,400 decisions finds no statistical significance that our interactive approach improves user accuracy on CUB-200 bird image classification over static explanations. This challenges the hypothesis that interactivity can boost human-AI team accuracy~\cite{sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding} and raises needs for future research. We open-source CHM-Corr++, an interactive tool for editing image classifier attention (see an interactive demo \href{http://137.184.82.109:7080/}{here}). % , and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on \href{https://github.com/anguyen8/chm-corr-interactive}{github}.
Abstract:In this paper, we present the details of Women in Computer Vision Workshop - WiCV 2023, organized alongside the hybrid CVPR 2023 in Vancouver, Canada. WiCV aims to amplify the voices of underrepresented women in the computer vision community, fostering increased visibility in both academia and industry. We believe that such events play a vital role in addressing gender imbalances within the field. The annual WiCV@CVPR workshop offers a) opportunity for collaboration between researchers from minority groups, b) mentorship for female junior researchers, c) financial support to presenters to alleviate finanacial burdens and d) a diverse array of role models who can inspire younger researchers at the outset of their careers. In this paper, we present a comprehensive report on the workshop program, historical trends from the past WiCV@CVPR events, and a summary of statistics related to presenters, attendees, and sponsorship for the WiCV 2023 workshop.
Abstract:Trust is an important factor in people's interactions with AI systems. However, there is a lack of empirical studies examining how real end-users trust or distrust the AI system they interact with. Most research investigates one aspect of trust in lab settings with hypothetical end-users. In this paper, we provide a holistic and nuanced understanding of trust in AI through a qualitative case study of a real-world computer vision application. We report findings from interviews with 20 end-users of a popular, AI-based bird identification app where we inquired about their trust in the app from many angles. We find participants perceived the app as trustworthy and trusted it, but selectively accepted app outputs after engaging in verification behaviors, and decided against app adoption in certain high-stakes scenarios. We also find domain knowledge and context are important factors for trust-related assessment and decision-making. We discuss the implications of our findings and provide recommendations for future research on trust in AI.
Abstract:Concept-based explanations for convolutional neural networks (CNNs) aim to explain model behavior and outputs using a pre-defined set of semantic concepts (e.g., the model recognizes scene class ``bedroom'' based on the presence of concepts ``bed'' and ``pillow''). However, they often do not faithfully (i.e., accurately) characterize the model's behavior and can be too complex for people to understand. Further, little is known about how faithful and understandable different explanation methods are, and how to control these two properties. In this work, we propose UFO, a unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations. UFO formalizes understandability and faithfulness as mathematical objectives and unifies most existing concept-based explanations methods for CNNs. Using UFO, we systematically investigate how explanations change as we turn the knobs of faithfulness and understandability. Our experiments demonstrate a faithfulness-vs-understandability tradeoff: increasing understandability reduces faithfulness. We also provide insights into the ``disagreement problem'' in explainable machine learning, by analyzing when and how concept-based explanations disagree with each other.
Abstract:Despite the proliferation of explainable AI (XAI) methods, little is understood about end-users' explainability needs. This gap is critical, because end-users may have needs that XAI methods should but don't yet support. To address this gap and contribute to understanding how explainability can support human-AI interaction, we conducted a study of a real-world AI application via interviews with 20 end-users of Merlin, a bird-identification app. We found that people express a need for practically useful information that can improve their collaboration with the AI system, and intend to use XAI explanations for calibrating trust, improving their task skills, changing their behavior to supply better inputs to the AI system, and giving constructive feedback to developers. We also assessed end-users' perceptions of existing XAI approaches, finding that they prefer part-based explanations. Finally, we discuss implications of our findings and provide recommendations for future designs of XAI, specifically XAI for human-AI collaboration.
Abstract:Concept-based interpretability methods aim to explain deep neural network model predictions using a predefined set of semantic concepts. These methods evaluate a trained model on a new, "probe" dataset and correlate model predictions with the visual concepts labeled in that dataset. Despite their popularity, they suffer from limitations that are not well-understood and articulated by the literature. In this work, we analyze three commonly overlooked factors in concept-based explanations. First, the choice of the probe dataset has a profound impact on the generated explanations. Our analysis reveals that different probe datasets may lead to very different explanations, and suggests that the explanations are not generalizable outside the probe dataset. Second, we find that concepts in the probe dataset are often less salient and harder to learn than the classes they claim to explain, calling into question the correctness of the explanations. We argue that only visually salient concepts should be used in concept-based explanations. Finally, while existing methods use hundreds or even thousands of concepts, our human studies reveal a much stricter upper bound of 32 concepts or less, beyond which the explanations are much less practically useful. We make suggestions for future development and analysis of concept-based interpretability methods. Code for our analysis and user interface can be found at \url{https://github.com/princetonvisualai/OverlookedFactors}
Abstract:Deep learning models have achieved remarkable success in different areas of machine learning over the past decade; however, the size and complexity of these models make them difficult to understand. In an effort to make them more interpretable, several recent works focus on explaining parts of a deep neural network through human-interpretable, semantic attributes. However, it may be impossible to completely explain complex models using only semantic attributes. In this work, we propose to augment these attributes with a small set of uninterpretable features. Specifically, we develop a novel explanation framework ELUDE (Explanation via Labelled and Unlabelled DEcomposition) that decomposes a model's prediction into two parts: one that is explainable through a linear combination of the semantic attributes, and another that is dependent on the set of uninterpretable features. By identifying the latter, we are able to analyze the "unexplained" portion of the model, obtaining insights into the information used by the model. We show that the set of unlabelled features can generalize to multiple models trained with the same feature space and compare our work to two popular attribute-oriented methods, Interpretable Basis Decomposition and Concept Bottleneck, and discuss the additional insights ELUDE provides.
Abstract:As machine learning is increasingly applied to high-impact, high-risk domains, there have been a number of new methods aimed at making AI models more human interpretable. Despite the recent growth of interpretability work, there is a lack of systematic evaluation of proposed techniques. In this work, we propose a novel human evaluation framework HIVE (Human Interpretability of Visual Explanations) for diverse interpretability methods in computer vision; to the best of our knowledge, this is the first work of its kind. We argue that human studies should be the gold standard in properly evaluating how interpretable a method is to human users. While human studies are often avoided due to challenges associated with cost, study design, and cross-method comparison, we describe how our framework mitigates these issues and conduct IRB-approved studies of four methods that represent the diversity of interpretability works: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest that explanations (regardless of if they are actually correct) engender human trust, yet are not distinct enough for users to distinguish between correct and incorrect predictions. Lastly, we also open-source our framework to enable future studies and to encourage more human-centered approaches to interpretability.
Abstract:The iMet 2020 dataset is a valuable resource in the space of fine-grained art attribution recognition, but we believe it has yet to reach its true potential. We document the unique properties of the dataset and observe that many of the attribute labels are noisy, more than is implied by the dataset description. Oftentimes, there are also semantic relationships between the labels (e.g., identical, mutual exclusion, subsumption, overlap with uncertainty) which we believe are underutilized. We propose an approach to cleaning and structuring the iMet 2020 labels, and discuss the implications and value of doing so. Further, we demonstrate the benefits of our proposed approach through several experiments. Our code and cleaned labels are available at https://github.com/sunniesuhyoung/iMet2020cleaned.