Abstract:Large multimodal models (LMMs) hold substantial promise across various domains, from personal assistance in daily tasks to sophisticated applications like medical diagnostics. However, their capabilities have limitations in the video game domain, such as challenges with scene understanding, hallucinations, and inaccurate descriptions of video game content, especially in open-source models. This paper describes the development of VideoGameBunny, a LLaVA-style model based on Bunny, specifically tailored for understanding images from video games. We release intermediate checkpoints, training logs, and an extensive dataset comprising 185,259 video game images from 413 titles, along with 389,565 image-instruction pairs that include image captions, question-answer pairs, and a JSON representation of 16 elements of 136,974 images. Our experiments show that our high quality game-related data has the potential to make a relatively small model outperform the much larger state-of-the-art model LLaVa-1.6-34b (which has more than 4x the number of parameters). Our study paves the way for future research in video game understanding on tasks such as playing, commentary, and debugging. Code and data are available at https://videogamebunny.github.io/
Abstract:Large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro are powering countless image-text applications and scoring high on many vision-understanding benchmarks. We propose BlindTest, a suite of 7 visual tasks absurdly easy to humans such as identifying (a) whether two circles overlap; (b) whether two lines intersect; (c) which letter is being circled in a word; and (d) counting the number of circles in a Olympic-like logo. Surprisingly, four state-of-the-art VLMs are, on average, only 56.20% accurate on our benchmark, with \newsonnet being the best (73.77% accuracy). On BlindTest, VLMs struggle with tasks that requires precise spatial information and counting (from 0 to 10), sometimes providing an impression of a person with myopia seeing fine details as blurry and making educated guesses. Code is available at: https://vlmsareblind.github.io/
Abstract:Via thousands of papers in Explainable AI (XAI), attention maps \cite{vaswani2017attention} and feature attribution maps \cite{bansal2020sam} have been established as a common means for finding how important each input feature is to an AI's decisions. It is an interesting, unexplored question whether allowing users to edit the feature importance at test time would improve a human-AI team's accuracy on downstream tasks. In this paper, we address this question by leveraging CHM-Corr, a state-of-the-art, ante-hoc explainable classifier \cite{taesiri2022visual} that first predicts patch-wise correspondences between the input and training-set images, and then base on them to make classification decisions. We build CHM-Corr++, an interactive interface for CHM-Corr, enabling users to edit the feature attribution map provided by CHM-Corr and observe updated model decisions. Via CHM-Corr++, users can gain insights into if, when, and how the model changes its outputs, improving their understanding beyond static explanations. However, our user study with 18 users who performed 1,400 decisions finds no statistical significance that our interactive approach improves user accuracy on CUB-200 bird image classification over static explanations. This challenges the hypothesis that interactivity can boost human-AI team accuracy~\cite{sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding} and raises needs for future research. We open-source CHM-Corr++, an interactive tool for editing image classifier attention (see an interactive demo \href{http://137.184.82.109:7080/}{here}). % , and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on \href{https://github.com/anguyen8/chm-corr-interactive}{github}.
Abstract:Large multimodal models (LMMs) have evolved from large language models (LLMs) to integrate multiple input modalities, such as visual inputs. This integration augments the capacity of LLMs for tasks requiring visual comprehension and reasoning. However, the extent and limitations of their enhanced abilities are not fully understood, especially when it comes to real-world tasks. To address this gap, we introduce GlitchBench, a novel benchmark derived from video game quality assurance tasks, to test and evaluate the reasoning capabilities of LMMs. Our benchmark is curated from a variety of unusual and glitched scenarios from video games and aims to challenge both the visual and linguistic reasoning powers of LMMs in detecting and interpreting out-of-the-ordinary events. We evaluate multiple state-of-the-art LMMs, and we show that GlitchBench presents a new challenge for these models. Code and data are available at: https://glitchbench.github.io/
Abstract:Image classifiers are information-discarding machines, by design. Yet, how these models discard information remains mysterious. We hypothesize that one way for image classifiers to reach high accuracy is to first zoom to the most discriminative region in the image and then extract features from there to predict image labels. We study six popular networks ranging from AlexNet to CLIP and find that proper framing of the input image can lead to the correct classification of 98.91% of ImageNet images. Furthermore, we explore the potential and limits of zoom transforms in image classification and uncover positional biases in various datasets, especially a strong center bias in two popular datasets: ImageNet-A and ObjectNet. Finally, leveraging our insights into the potential of zoom, we propose a state-of-the-art test-time augmentation (TTA) technique that improves classification accuracy by forcing models to explicitly perform zoom-in operations before making predictions. Our method is more interpretable, accurate, and faster than MEMO, a state-of-the-art TTA method. Additionally, we propose ImageNet-Hard, a new benchmark where zooming in alone often does not help state-of-the-art models better label images.
Abstract:Video game testing requires game-specific knowledge as well as common sense reasoning about the events in the game. While AI-driven agents can satisfy the first requirement, it is not yet possible to meet the second requirement automatically. Therefore, video game testing often still relies on manual testing, and human testers are required to play the game thoroughly to detect bugs. As a result, it is challenging to fully automate game testing. In this study, we explore the possibility of leveraging the zero-shot capabilities of large language models for video game bug detection. By formulating the bug detection problem as a question-answering task, we show that large language models can identify which event is buggy in a sequence of textual descriptions of events from a game. To this end, we introduce the GameBugDescriptions benchmark dataset, which consists of 167 buggy gameplay videos and a total of 334 question-answer pairs across 8 games. We extensively evaluate the performance of six models across the OPT and InstructGPT large language model families on our benchmark dataset. Our results show promising results for employing language models to detect video game bugs. With the proper prompting technique, we could achieve an accuracy of 70.66%, and on some video games, up to 78.94%. Our code, evaluation data and the benchmark can be found on https://asgaardlab.github.io/LLMxBugs
Abstract:Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stakes applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of self-interpretable image classifiers that first explain, and then predict (as opposed to post-hoc explanations) by harnessing the visual correspondences between a query image and exemplars. Our models consistently improve (by 1 to 4 points) on out-of-distribution (OOD) datasets while performing marginally worse (by 1 to 2 points) on in-distribution tests than ResNet-50 and a $k$-nearest neighbor classifier (kNN). Via a large-scale, human study on ImageNet and CUB, our correspondence-based explanations are found to be more useful to users than kNN explanations. Our explanations help users more accurately reject AI's wrong decisions than all other tested methods. Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e., that is higher than either AI-alone or human-alone), in ImageNet and CUB image classification tasks.
Abstract:Gameplay videos contain rich information about how players interact with the game and how the game responds. Sharing gameplay videos on social media platforms, such as Reddit, has become a common practice for many players. Often, players will share gameplay videos that showcase video game bugs. Such gameplay videos are software artifacts that can be utilized for game testing, as they provide insight for bug analysis. Although large repositories of gameplay videos exist, parsing and mining them in an effective and structured fashion has still remained a big challenge. In this paper, we propose a search method that accepts any English text query as input to retrieve relevant videos from large repositories of gameplay videos. Our approach does not rely on any external information (such as video metadata); it works solely based on the content of the video. By leveraging the zero-shot transfer capabilities of the Contrastive Language-Image Pre-Training (CLIP) model, our approach does not require any data labeling or training. To evaluate our approach, we present the $\texttt{GamePhysics}$ dataset consisting of 26,954 videos from 1,873 games, that were collected from the GamePhysics section on the Reddit website. Our approach shows promising results in our extensive analysis of simple queries, compound queries, and bug queries, indicating that our approach is useful for object and event detection in gameplay videos. An example application of our approach is as a gameplay video search engine to aid in reproducing video game bugs. Please visit the following link for the code and the data: https://asgaardlab.github.io/CLIPxGamePhysics/
Abstract:Non Fungible Tokens (NFTs) have gained a solid foothold within the crypto community, and substantial amounts of money have been allocated to their trades. In this paper, we studied one of the most prominent marketplaces dedicated to NFT auctions and trades, Foundation. We analyzed the activities on Foundation and identified several intriguing underlying dynamics that occur on this platform. Moreover, We performed social network analysis on a graph that we had created based on transferred NFTs on Foundation, and then described the characteristics of this graph. Lastly, We built a neural network-based similarity model for retrieving and clustering similar NFTs. We also showed that for most NFTs, their performances in auctions were comparable with the auction performance of other NFTs in their cluster.